1,728 research outputs found

    Anisotropy of DC Electric Field Influence on Acoustic Wave Propagation in Piezoelectric Plate

    Get PDF
    Anisotropy of dc electric field influence on the different types of acoustic waves in the piezoelectric plate has been investigated by means of computer simulation. Detail calculations have made for bismuth germanium oxide crystalsРассмотрена анизотропия влияния однородного электрического поля E на характеристики и условия распространения волн различных типов в пьезоэлектрической пластине германосилле- нита

    Spin alignment measurements using vector mesons with ALICE detector at the LHC

    Get PDF
    We present new measurements related to spin alignment of K*0 vector mesons at mid-rapidity for Pb–Pb collisions at √sNN = 2.76 and 5.02 TeV. The spin alignment measurements are carried out with respect to production plane and 2nd order event plane. At low pT the spin density matrix element ρ00 for K*0 is found to have values slightly below 1/3, while it is consistent with 1/3, i.e. no spin alignment, at high pT. Similar values of ρ00 are observed with respect to both production plane and event plane. Within statistical and systematic uncertainties, ρ00 values are also found to be independent of √sNN. ρ00 also shows centrality dependence with maximum deviation from 1/3 for mid-central collisions with respect to both the kinematic planes. The measurements for K*0 in pp collisions at √s = 13 TeV and for K0S (a spin 0 hadron) in 20-40% central Pb–Pb collisions at √sNN = 2.76 TeV are consistent with no spin alignment.publishedVersio

    Mid-Staffordshire:a case study of failed governance and leadership?

    Get PDF
    Hadronic resonances are unique tools to investigate the interplay of re-scattering and regeneration effects during the hadronization phase in heavy-ion collisions. Measurements in small collision systems provide a necessary baseline for heavy-ion data, help to tune pQCD inspired event generators and give insight into the search for the onset of collective effects. As the ϕ meson has a longer lifetime compared to other resonances, it is expected that its production would be much less affected by regeneration and re-scattering processes. We report on measurements of ϕ meson production in minimum bias pp collisions at different beam energies and as a function of charged particle multiplicity with the ALICE detector at the LHC. The results include the transverse momentum (pT) distributions of ϕ as well as the particle yield ratios. Finally, we have also studied the ϕ effective strangeness content by comparing our results to theoretical calculations

    Latest results on the production of hadronic resonances in ALICE at the LHC

    Get PDF
    Measurement of short-lived hadronic resonances are used to study different aspects of particle production and collision dynamics in pp, p–A and relativistic heavy-ion collisions. The yields of resonances are sensitive to the competing processes of hadron rescattering and regeneration, thus making these particles unique probes of the properties of the late hadronic phase. Measurements of resonances with different masses and quantum numbers also provide insight into strangeness production and processes that determine the shapes of particle momentum spectra at intermediate transverse momenta, as well as the species dependence of hadron suppression at high momentum. We present the comprehensive set of results in the ALICE experiment with unprecedented precision for ρ(770)0, K∗(892), φ(1020), Σ(1385)±, Λ(1520), and Ξ(1530)0 production in pp, p–Pb, Xe–Xe and Pb–Pb collisions in the energy range √sNN = 2.76-13 TeV, including the latest measurements from LHC Run 2. The obtained results are used to study the system-size and collision-energy evolution of transverse momentum spectra, particle ratios and nuclear modification factors and to search for the onset of collectivity in small collision systems. We compare these results to lower energy measurements and model calculations where available.publishedVersio

    Light neutral meson production in heavy ion collisions with ALICE in the era of precision physics at the LHC

    Get PDF
    The production of light neutral mesons in AA collisions probes the physics of the Quark-Gluon Plasma (QGP), which is formed in heavy-ion collisions at the LHC. More specifically, the centrality dependent neutral meson spectra in AA collisions compared to its spectra in minimum-bias pp collisions, scaled with the number of hard collisions, provides information on the energy loss of partons traversing the QGP. The measurement allows to test with high precision the predictions of theoretical model calculations. In addition, the decay of the π0 and η mesons are the dominant back- grounds for all direct photon measurements. Therefore, pushing the limits of the precision of neutral meson production is key to learning about the temperature and space-time evolution of the QGP. In the ALICE experiment neutral mesons can be detected via their decay into two photons. The latter can be reconstructed using the two calorimeters EMCal and PHOS or via conversions in the detector material. The excellent momentum resolution of the conversion photons down to very low pT and the high reconstruction efficiency and triggering capability of calorimeters at high pT, allow us to measure the pT dependent invariant yield of light neutral mesons over a wide kinematic range. Combining state-of-the-art reconstruction techniques with the high statistics delivered by the LHC in Run 2 gives us the opportunity to enhance the precision of our measurements. In these proceedings, new ALICE run 2 preliminary results for neutral meson production in pp and Pb–Pb collisions at LHC energies are presented.publishedVersio

    ϒ production in p–Pb collisions at √sNN=8.16 TeV

    Get PDF
    ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical calculations.publishedVersio

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe
    corecore