89 research outputs found

    Tg2576 Cortical Neurons That Express Human Ab Are Susceptible to Extracellular Aβ-Induced, K+ Efflux Dependent Neurodegeneration

    Get PDF
    Background: One of the key pathological features of AD is the formation of insoluble amyloid plaques. The major constituent of these extracellular plaques is the beta-amyloid peptide (Aβ), although Aβ is also found to accumulate intraneuronally in AD. Due to the slowly progressive nature of the disease, it is likely that neurons are exposed to sublethal concentrations of both intracellular and extracellular Aβ for extended periods of time. Results: In this study, we report that daily exposure to a sublethal concentration of Aβ1-40 (1 μM) for six days induces substantial apoptosis of cortical neurons cultured from Tg2576 mice (which express substantial but sublethal levels of intracellular Aβ). Notably, untreated Tg2576 neurons of similar age did not display any signs of apoptosis, indicating that the level of intracellular Aβ present in these neurons was not the cause of toxicity. Furthermore, wildtype neurons did not become apoptotic under the same chronic Aβ1-40 treatment. We found that this apoptosis was linked to Tg2576 neurons being unable to maintain K⁺ homeostasis following Aβ treatment. Furthermore, blocking K⁺ efflux protected Tg2576 neurons from Aβ-induced neurotoxicity. Interestingly, chronic exposure to 1 μM Aβ1-40 caused the generation of axonal swellings in Tg2576 neurons that contained dense concentrations of hyperphosphorylated tau. These were not observed in wildtype neurons under the same treatment conditions. Conclusions: Our data suggest that when neurons are chronically exposed to sublethal levels of both intra- and extra-cellular Aβ, this causes a K⁺-dependent neurodegeneration that has pathological characteristics similar to AD.9 page(s

    The Effect of Structural Complexity, Prey Density, and “Predator-Free Space” on Prey Survivorship at Created Oyster Reef Mesocosms

    Get PDF
    Interactions between predators and their prey are influenced by the habitat they occupy. Using created oyster (Crassostrea virginica) reef mesocosms, we conducted a series of laboratory experiments that created structure and manipulated complexity as well as prey density and “predator-free space” to examine the relationship between structural complexity and prey survivorship. Specifically, volume and spatial arrangement of oysters as well as prey density were manipulated, and the survivorship of prey (grass shrimp, Palaemonetes pugio) in the presence of a predator (wild red drum, Sciaenops ocellatus) was quantified. We found that the presence of structure increased prey survivorship, and that increasing complexity of this structure further increased survivorship, but only to a point. This agrees with the theory that structural complexity may influence predator-prey dynamics, but that a threshold exists with diminishing returns. These results held true even when prey density was scaled to structural complexity, or the amount of “predator-free space” was manipulated within our created reef mesocosms. The presence of structure and its complexity (oyster shell volume) were more important in facilitating prey survivorship than perceived refugia or density-dependent prey effects. A more accurate indicator of refugia might require “predator-free space” measures that also account for the available area within the structure itself (i.e., volume) and not just on the surface of a structure. Creating experiments that better mimic natural conditions and test a wider range of “predator-free space” are suggested to better understand the role of structural complexity in oyster reefs and other complex habitats

    The RNA-binding protein PTBP1 is necessary for B cell selection in germinal centers.

    Get PDF
    Antibody affinity maturation occurs in germinal centers (GCs), where B cells cycle between the light zone (LZ) and the dark zone. In the LZ, GC B cells bearing immunoglobulins with the highest affinity for antigen receive positive selection signals from helper T cells, which promotes their rapid proliferation. Here we found that the RNA-binding protein PTBP1 was needed for the progression of GC B cells through late S phase of the cell cycle and for affinity maturation. PTBP1 was required for proper expression of the c-MYC-dependent gene program induced in GC B cells receiving T cell help and directly regulated the alternative splicing and abundance of transcripts that are increased during positive selection to promote proliferation

    Genomes of trombidid mites reveal novel predicted allergens and laterally-transferred genes associated with secondary metabolism

    Get PDF
    Trombidid mites have a unique lifecycle in which only the larval stage is ectoparasitic. In the superfamily Trombiculoidea (“chiggers”), the larvae feed preferentially on vertebrates, including humans. Species in the genus Leptotrombidium are vectors of a potentially fatal bacterial infection, scrub typhus, which affects 1 million people annually. Moreover, chiggers can cause pruritic dermatitis (trombiculiasis) in humans and domesticated animals. In the Trombidioidea (velvet mites), the larvae feed on other arthropods and are potential biological control agents for agricultural pests. Here, we present the first trombidid mites genomes, obtained both for a chigger, Leptotrombidium deliense, and for a velvet mite, Dinothrombium tinctorium

    Clinical pharmacology consultation: a better answer to safety issues of drug therapy during pregnancy?

    Get PDF
    PURPOSE: drug safety classifications give a very basic estimation of risk and should only be used as general guideline when assessing risk of pregnancy-related drug exposure or planning treatment. We conducted a study to assess the strength of association between both the clinical pharmacologists' risk assessment and the FDA risk categorization, and adverse pregnancy outcomes. ----- METHODS: we retrospectively reviewed records of 1,076 patients consecutively referred to the clinical pharmacology outpatient clinic for pregnancy-related drug exposure (2000-2008). Clinical pharmacologists' risk assessments were reviewed in relation to FDA drug categorization and available pregnancy outcomes. ----- RESULTS: overall, clinical pharmacologists' risk estimation was in agreement with the FDA risk categorization system in only 28% of consulted women, and in only 9% of women with high-risk exposure (FDA DX). Clinical pharmacologists' risk assessment confirming high-risk drug exposure had a better positive predictive value for adverse pregnancy outcomes than the FDA DX categorization (25% vs 14% respectively), while the negative predictive values were similar (92% vs 94% respectively). Clinical pharmacologists' risk assessment was a better predictor of adverse pregnancy outcomes compared with FDA risk categorization (OR 2.11 [95%CI 1.5-3.1; p < 0.001] vs OR 1.52 [95%CI 1.1-2.1; p = 0.014] respectively). ----- CONCLUSIONS: additional evaluation beyond the FDA drug classification is essential for safer and more rational drug use in pregnancy. Clinical pharmacologists who have undergone rigorous medical training are ideally placed to consult on administration of medicines in pregnant women, thus making the prescribing of treatments in that patient category substantially safer and more rational
    corecore