89 research outputs found

    Quantification of sediment-water interactions in a polluted tropical river through biogeochemical modeling

    Get PDF
    Diagenetic modeling presents an interesting and robust way to understand sediment-water column processes. Here we present the application of such a model to the Day River in Northern Vietnam, a system that is subject to high levels of domestic wastewater inputs from the Hanoi metropolitan area. Experimental data from three areas of different water and sediment quality, combined with some additional data from the river, are used to set up and calibrate a diagenetic model. The model was used to determine the role of the sediments as a sink for carbon and nutrients and shows that in the dry season, 27% of nitrogen, 25% of carbon, and 38% of phosphorus inputs into the river system are stored in sediments. The corresponding numbers during the rainy season are 15%, 10%, and 20%, respectively. The diagenetic model was then used to test the impact of an improvement in the treatment of Hanoi's municipal wastewater. We show that improved wastewater treatment could reduce by about 17.5% the load of organic matter to the sediment. These results are the first to highlight the importance of sediments as a potential removal mechanism of organic matter and nutrients from the water column in this type of highly impacted tropical urban river, further demonstrating that rivers need to be considered as reaction sites and not just as inert conduits

    Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidence for niche partitioning by tropical rain forest trees

    Full text link
    1   The relative importance of niche- and dispersal-mediated processes in structuring diverse tropical plant communities remains poorly understood. Here, we link mesoscale beta diversity to soil variation throughout a lowland Bornean watershed underlain by alluvium, sedimentary and granite parent materials ( c . 340 ha, 8–200 m a.s.l.). We test the hypothesis that species turnover across the habitat gradient reflects interspecific partitioning of soil resources. 2   Floristic inventories (≄ 1 cm d.b.h.) of the Dipterocarpaceae, the dominant Bornean canopy tree family, were combined with extensive soil analyses in 30 (0.16 ha) plots. Six samples per plot were analysed for total C, N, P, K, Ca and Mg, exchangeable K, Ca and Mg, extractable P, texture, and pH. 3   Extractable P, exchangeable K, and total C, N and P varied significantly among substrates and were highest on alluvium. Thirty-one dipterocarp species ( n  = 2634 individuals, five genera) were recorded. Dipterocarp density was similar across substrates, but richness and diversity were highest on nutrient-poor granite and lowest on nutrient-rich alluvium. 4   Eighteen of 22 species were positively or negatively associated with parent material. In 8 of 16 abundant species, tree distribution (≄ 10 cm d.b.h.) was more strongly non-random than juveniles (1–10 cm d.b.h.), suggesting higher juvenile mortality in unsuitable habitats. The dominant species Dipterocarpus sublamellatus (> 50% of stems) was indifferent to substrate, but nine of 11 ‘subdominant’ species (> 8 individuals ha −1 ) were substrate specialists. 5   Eighteen of 22 species were significantly associated with soil nutrients, especially P, Mg and Ca. Floristic variation was significantly correlated with edaphic and geographical distance for all stems ≄ 1 cm d.b.h. in Mantel analyses. However, juvenile variation (1–10 cm d.b.h.) was more strongly related to geographical distance than edaphic factors, while the converse held for established trees (≄ 10 cm d.b.h.), suggesting increased importance of niche processes with size class. 6   Pervasive dipterocarp associations with soil factors suggest that niche partitioning structures dipterocarp tree communities. Yet, much floristic variation unrelated to soil was correlated with geographical distance between plots, suggesting that dispersal and niche processes jointly determine mesoscale beta diversity in the Bornean Dipterocarpaceae. Journal of Ecology (2005) doi: 10.1111/j.1365-2745.2005.01077.xPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72822/1/j.1365-2745.2005.01077.x.pd

    Glueballs and the superfluid phase of Two-Color QCD

    Full text link
    We present the first results on scalar glueballs in cold, dense matter using lattice simulations of two color QCD. The simulations are carried out on a 63×126^3 \times 12 lattice and use a standard hybrid molecular dynamics algorithm for staggered fermions for two values of quark mass. The glueball correlators are evaluated via a multi-step smearing procedure. The amplitude of the glueball correlator peaks in correspondence with the zero temperature chiral transition, ÎŒc=mπ/2\mu_c = m_\pi/2, and the propagators change in a significant way in the superfluid phase, while the Polyakov loop is mearly insensitive to the transition. Standard analysis suggest that lowest mass in the 0++0^{++} gluonic channel decreases in the superfluid phase, but these observations need to be confirmed on larger and more elongated lattices These results indicate that a nonzero density induces nontrivial modifications of the gluonic medium.Comment: 26 pages, 13 figures; discussions and one figure added; to appear in EPJ

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
    • 

    corecore