18 research outputs found

    Temperature coefficients of crystalline-quartz elastic constants over the cryogenic range [4 K, 15 K]

    Full text link
    This paper brings out results of a measurement campaign aiming to determine the temperature coefficients of synthetic quartz elastic constants at liquid helium temperature. The method is based on the relationship between the resonance frequencies of a quartz acoustic cavity and the elastic constants of the material. The temperature coefficients of the elastic constants are extracted from experimental frequency-temperature data collected from a set of resonators of various cut angles, because of the anisotropy of quartz, measured on the very useful cryogenic range [4 K - 15 K]. The knowledge of these temperature coefficients would allow to further design either quartz temperature sensors or conversely frequency-temperature compensated quartz cuts. With extremely low losses, lower than 10−910^{-9} for the best ones, key applications of such devices are ultra-low loss mechanical systems used in many research areas including frequency control and fundamental measurements. The Eulerian formalism is used in this study to identify the temperature coefficients.Comment: 6 pages,4 figure

    Operation of graphene-on-quartz acoustic cavity at cryogenic temperatures

    Full text link
    This paper presents observation of mechanical effects of a graphene monolayer deposited on a quartz substrate designed to operate as an extremely low-loss acoustic cavity standard at liquid-helium temperature. Resonances of this state-of-the-art cavity are used to probe the mechanical loss of the graphene film, assessed to be about 80 10−480 \: 10^{-4} at 4K. Significant frequency shifts of positive and negative sign have been observed for many overtones of three modes of vibration. These shifts cannot be predicted by the mass-loading model widely used in the Quartz Microbalance community. Although thermo-mechanical stresses are expected in such a graphene-on-quartz composite device at low temperature due to a mismatch of expansion coefficients of both materials, it cannot fully recover the mismatch of the mass loading effect. Based on a force-frequency theory applied to the three thickness modes, to reconcile the experimental results, the mean stresses in the graphene monolayer should be of the order of 140 GPa, likely close to its tensile strength.Comment: Corrected typos. New Fig. Text improve

    A new method of probing mechanical losses of coatings at cryogenic temperatures

    Full text link
    A new method of probing mechanical losses and comparing the corresponding deposition processes of metallic and dielectric coatings in 1-100 MHz frequency range and cryogenic temperatures is presented. The method is based on the use of extremely high-quality quartz acoustic cavities whose internal losses are orders of magnitude lower than any available coatings nowadays. The approach is demonstrated for Chromium, Chromium/Gold and a multilayer tantala/silica coatings. The Ta2O5/SiO2{\rm Ta}_2{\rm O}_5/{\rm Si}{\rm O}_2 coating has been found to exhibit a loss angle lower than 1.6×10−51.6\times10^{-5} near 30 {\rm MHz} at 4 {\rm K}. The results are compared to the previous measurements

    Résonateurs à ondes acoustiques de volume piégées à trÚs basses température : Applications à l'optomécanique

    No full text
    For a few years, the Time and Frequency department in FEMTO-ST Insitute has been leading research about the behavior of Bulk Acoustic Wave (BAW) trapped in quartz crystal at cryogenic temperatures (near 4K).The measured quality factor are around a few billions at few tens of MHz for such temperatures. Acoustical quartz cavities are therefore good candidates for ultrastable cryogenic frequency sources. The work presented here is in the natural continuation of the research cited above. They aim at strenghtening the interest for quartz crystal, but also to consider alternative solutions with non-piezoelectric material with very-low acoustical losses, for which optical excitation is an option. The following work can be summed up in three main parts:- The first part is about the determination of a quartz crystal cut for which a turnover point exists in the frequency-temperature curve in the cryogenic region. Indeed, it is not enough to barely control the temperature in an ultrastable frequency source. Such a turnover point needs to be the operation point for thermal regulation. Searching a compensated cut arose the need for a preliminary measurements campaign of thermal coefficients of elastics coefficients of the material, which were unknown at low temperature. It was then possible, based on these coefficients, to calculate and even realize a cut fulfilling the required condition.- The second part had the objective to demonstrate conceptually that using a quartz acoustical cavity as an optical cavity was feasible. In its basic scheme, a BAW quartz resonator is plano-convex (to ensure the trapping of the acoustic wave) and has electrodes (metal-made to ensure electrical excitation) deposited on each face. It has been demonstrated, both theoretically and experimentally, that such a geometry works fine as an optical cavity, with its corresponding advantages and limitations. This scheme is used for the optomechanical coupling discussed in the third part and constitutes the very base for more efficient optomechanical devices.- The third part is dedicated to the evaluation of how efficient will such devices be while functioning at cryogenic temperature. A theoretical quantification of the optomechanical coupling that these cavities might reach is also presented.Depuis plusieurs annĂ©es, le dĂ©partement Temps-FrĂ©quence de l’institut FEMTO-ST mĂšne une Ă©tude sur le comportement des rĂ©sonateurs Ă  ondes acoustiques de volume Ă  Ă©nergie piĂ©gĂ©e dans des cristaux Ă  quartz Ă  tempĂ©rature cryogĂ©nique, typiquement proche de 4 K. Les performances en termes de coefficient de qualitĂ© mĂ©canique relevĂ© Ă  ces tempĂ©ratures, plusieurs milliards Ă  quelques dizaines de MHz, font des cavitĂ©s acoustiques en quartz de bons candidats pour des sources de frĂ©quences cryogĂ©niques ultrastables.Les travaux prĂ©sentĂ©s dans ce manuscrit s’inscrivent dans la continuitĂ© de ce programme d’étude. Ils visent Ă  consolider l’intĂ©rĂȘt du quartz mais aussi Ă  envisager des solutions alternatives Ă  base de matĂ©riaux Ă  trĂšs faibles pertes acoustiques mais non piĂ©zoĂ©lectriques pour lesquels l’excitation optique est une alternative crĂ©dible. Les prĂ©sents travaux peuvent ĂȘtre rĂ©sumĂ©s en trois parties majeures :- La premiĂšre partie a Ă©tĂ© rĂ©alisĂ©e dans le but de dĂ©terminer une coupe de quartz possĂ©dant un point d’inversion sur sa caractĂ©ristique frĂ©quence-tempĂ©rature aux tempĂ©ratures cryogĂ©niques. La seule rĂ©gulation de tempĂ©rature du rĂ©sonateur d’une source de frĂ©quence ultrastable est en effet insuffisante sans l’existence d’un tel point qui doit servir de point de fonctionnement Ă  la rĂ©gulation thermique. La recherche d’une coupe compensĂ©e a nĂ©cessitĂ© une campagne prĂ©liminaire de mesure des coefficients de tempĂ©rature des coefficients Ă©lastiques du matĂ©riau, inconnus Ă  basses tempĂ©ratures. Il a alors Ă©tĂ© possible, Ă  partir de la connaissance de ces coefficients, d’identifier par le calcul puis de rĂ©aliser une coupe remplissant les conditions recherchĂ©es.- La seconde partie a pour objectif de faire la preuve de concept consistant Ă  utiliser une cavitĂ© acoustique en quartz en cavitĂ© optique. Dans sa version de base, le rĂ©sonateur Ă  quartz Ă  onde de volume piĂ©gĂ©e est plan-convexe (pour assurer le piĂ©geage) et Ă  Ă©lectrodes (mĂ©talliques pour assurer l’excitation Ă©lectrique !) dĂ©posĂ©es sur chacune de ses faces. Il est dĂ©montrĂ©, thĂ©oriquement et expĂ©rimentalement, qu’une telle gĂ©omĂ©trie fonctionne en cavitĂ© optique, avec son avantage de simplicitĂ© mais avec ses limites. Cette structure de base doit ĂȘtre mise Ă  profit pour le couplage optomĂ©canique abordĂ© en troisiĂšme partie et constitue le socle de conception de dispositifs optomĂ©caniques plus performants.- La troisiĂšme partie est consacrĂ©e Ă  l’évaluation de la pertinence du couplage optomĂ©canique de tels dispositifs fonctionnant Ă  tempĂ©rature cryogĂ©nique. Une Ă©tude portant sur la quantification thĂ©orique du couplage optomĂ©canique que peut atteindre une telle cavitĂ© a Ă©tĂ© rĂ©alisĂ©e

    Bulk acoustics waves resonators trapped at very low temperatures : Optomechanical applications

    No full text
    Depuis plusieurs annĂ©es, le dĂ©partement Temps-FrĂ©quence de l’institut FEMTO-ST mĂšne une Ă©tude sur le comportement des rĂ©sonateurs Ă  ondes acoustiques de volume Ă  Ă©nergie piĂ©gĂ©e dans des cristaux Ă  quartz Ă  tempĂ©rature cryogĂ©nique, typiquement proche de 4 K. Les performances en termes de coefficient de qualitĂ© mĂ©canique relevĂ© Ă  ces tempĂ©ratures, plusieurs milliards Ă  quelques dizaines de MHz, font des cavitĂ©s acoustiques en quartz de bons candidats pour des sources de frĂ©quences cryogĂ©niques ultrastables.Les travaux prĂ©sentĂ©s dans ce manuscrit s’inscrivent dans la continuitĂ© de ce programme d’étude. Ils visent Ă  consolider l’intĂ©rĂȘt du quartz mais aussi Ă  envisager des solutions alternatives Ă  base de matĂ©riaux Ă  trĂšs faibles pertes acoustiques mais non piĂ©zoĂ©lectriques pour lesquels l’excitation optique est une alternative crĂ©dible. Les prĂ©sents travaux peuvent ĂȘtre rĂ©sumĂ©s en trois parties majeures :- La premiĂšre partie a Ă©tĂ© rĂ©alisĂ©e dans le but de dĂ©terminer une coupe de quartz possĂ©dant un point d’inversion sur sa caractĂ©ristique frĂ©quence-tempĂ©rature aux tempĂ©ratures cryogĂ©niques. La seule rĂ©gulation de tempĂ©rature du rĂ©sonateur d’une source de frĂ©quence ultrastable est en effet insuffisante sans l’existence d’un tel point qui doit servir de point de fonctionnement Ă  la rĂ©gulation thermique. La recherche d’une coupe compensĂ©e a nĂ©cessitĂ© une campagne prĂ©liminaire de mesure des coefficients de tempĂ©rature des coefficients Ă©lastiques du matĂ©riau, inconnus Ă  basses tempĂ©ratures. Il a alors Ă©tĂ© possible, Ă  partir de la connaissance de ces coefficients, d’identifier par le calcul puis de rĂ©aliser une coupe remplissant les conditions recherchĂ©es.- La seconde partie a pour objectif de faire la preuve de concept consistant Ă  utiliser une cavitĂ© acoustique en quartz en cavitĂ© optique. Dans sa version de base, le rĂ©sonateur Ă  quartz Ă  onde de volume piĂ©gĂ©e est plan-convexe (pour assurer le piĂ©geage) et Ă  Ă©lectrodes (mĂ©talliques pour assurer l’excitation Ă©lectrique !) dĂ©posĂ©es sur chacune de ses faces. Il est dĂ©montrĂ©, thĂ©oriquement et expĂ©rimentalement, qu’une telle gĂ©omĂ©trie fonctionne en cavitĂ© optique, avec son avantage de simplicitĂ© mais avec ses limites. Cette structure de base doit ĂȘtre mise Ă  profit pour le couplage optomĂ©canique abordĂ© en troisiĂšme partie et constitue le socle de conception de dispositifs optomĂ©caniques plus performants.- La troisiĂšme partie est consacrĂ©e Ă  l’évaluation de la pertinence du couplage optomĂ©canique de tels dispositifs fonctionnant Ă  tempĂ©rature cryogĂ©nique. Une Ă©tude portant sur la quantification thĂ©orique du couplage optomĂ©canique que peut atteindre une telle cavitĂ© a Ă©tĂ© rĂ©alisĂ©e.For a few years, the Time and Frequency department in FEMTO-ST Insitute has been leading research about the behavior of Bulk Acoustic Wave (BAW) trapped in quartz crystal at cryogenic temperatures (near 4K).The measured quality factor are around a few billions at few tens of MHz for such temperatures. Acoustical quartz cavities are therefore good candidates for ultrastable cryogenic frequency sources. The work presented here is in the natural continuation of the research cited above. They aim at strenghtening the interest for quartz crystal, but also to consider alternative solutions with non-piezoelectric material with very-low acoustical losses, for which optical excitation is an option. The following work can be summed up in three main parts:- The first part is about the determination of a quartz crystal cut for which a turnover point exists in the frequency-temperature curve in the cryogenic region. Indeed, it is not enough to barely control the temperature in an ultrastable frequency source. Such a turnover point needs to be the operation point for thermal regulation. Searching a compensated cut arose the need for a preliminary measurements campaign of thermal coefficients of elastics coefficients of the material, which were unknown at low temperature. It was then possible, based on these coefficients, to calculate and even realize a cut fulfilling the required condition.- The second part had the objective to demonstrate conceptually that using a quartz acoustical cavity as an optical cavity was feasible. In its basic scheme, a BAW quartz resonator is plano-convex (to ensure the trapping of the acoustic wave) and has electrodes (metal-made to ensure electrical excitation) deposited on each face. It has been demonstrated, both theoretically and experimentally, that such a geometry works fine as an optical cavity, with its corresponding advantages and limitations. This scheme is used for the optomechanical coupling discussed in the third part and constitutes the very base for more efficient optomechanical devices.- The third part is dedicated to the evaluation of how efficient will such devices be while functioning at cryogenic temperature. A theoretical quantification of the optomechanical coupling that these cavities might reach is also presented

    Frequency-Temperature Compensated Cuts of Crystalline-Quartz Acoustic Cavity Within the Cryogenic Range [4 K, 15 K]

    No full text
    International audienceNew temperature-coefficients of quartz elasticcoefficients particularly relevant at liquid-helium temperature have been reported recently. Based on this result, frequencytemperature compensated cuts are predicted by calculation, and then demonstrated by experiment. Such compensated cuts can definitely fix the issue of remaining temperature sensitivity of crystalline quartz acoustic cavities unbeatable for their extremely low mechanical loss, as low as 10–9, when operated at liquid-He temperature

    Temperature Coefficients of Quartz at Cryogenic Temperature

    No full text
    International audienceThe temperature coefficients of the elastic coefficients of quartz within [4 K, 15 K], the operating range of conventional cryocoolers, are predicted from experimental data. Raw data consist of a set of frequency-temperature curves recorded from bulk acoustic wave resonators made in different plates cut according to various angles relative to the crystallographic axes. Raw data are then processed as described in the paper in order to provide the 1st, 2nd, and 3rd order temperature coefficients of the seven elastic coefficients of quartz crystal
    corecore