42 research outputs found

    The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats

    Get PDF
    The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet—undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well

    Ecosystem exploitation and trophodynamic indicators: a comparison between the Northern Adriatic Sea and Southern New England

    Get PDF
    In an ecosystem-based resource management context, it is crucial to assess the relationships between community structure and ecosystem function and how those relationships change with resource extraction. To elucidate how changes in resource use can affect community structure and ecosystem function, we executed a comparative analysis of two different ecosystems subjected to notable fishing pressure. We contrasted the Northern Adriatic Sea (NAS) and Southern New England (SNE) ecosystems by examining outputs from comparable steady-state models. Both ecosystems have relatively high fishing pressure and a high biomass of benthic invertebrates. The basic structure of the food webs shows differences both in the number and definition of the functional groups, as described in the models. Fisheries, on the contrary, show similarities both in terms of catches and discards. Almost all statistics summarizing the structure and flows showed values three times higher in the SNE than in the NAS ecosystem, but despite this difference the two ecosystems exhibited similar, overall properties. Biomass ratios and the Mixed Trophic Impact (MTI) analysis showed that both ecosystems are dominated by the benthic compartment. Removing the biomass effect, however, shows a clear top-down effect, with a high rank achieved by fishing activities. In general terms, the low mean trophic level of catches and the high primary production required (PPR) values result in a high overexploitation level of the ecosystem, as highlighted by the L index. We conclude by exploring how comparative studies will continue to be valuable as ecosystem-based management is further implemented
    corecore