113 research outputs found

    Structure and far-infrared edge modes of quantum antidots at zero magnetic field

    Get PDF
    We have investigated edge modes of different multipolarity sustained by quantum antidots at zero magnetic field. The ground state of the antidot is described within a local density functional formalism. Two sum rules, which are exact within this formalism, have been derived and used to evaluate the energy of edge collective modes as a function of the surface density and the size of the antidot.Comment: Typeset using Revtex, 8 pages and 6 Postscript figure

    Butterfly-like spectra and collective modes of antidot superlattices in magnetic fields

    Full text link
    We calculate the energy band structure for electrons in an external periodic potential combined with a perpendicular magnetic field. Electron-electron interactions are included within a Hartree approximation. The calculated energy spectra display a considerable degree of self-similarity, just as the ``Hofstadter butterfly.'' However, screening affects the butterfly, most importantly the bandwidths oscillate with magnetic field in a characteristic way. We also investigate the dynamic response of the electron system in the far-infrared (FIR) regime. Some of the peaks in the FIR absorption spectra can be interpreted mainly in semiclassical terms, while others originate from inter(sub)band transitions.Comment: 4 pages with 2 embeded eps figures. Uses revtex, multicol and graphicx styles. Accepted for publication in PRB Brief Report

    Current Density Functional approach to large quantum dots in intense magnetic fields

    Get PDF
    Within Current Density Functional Theory, we have studied a quantum dot made of 210 electrons confined in a disk geometry. The ground state of this large dot exhibits some features as a function of the magnetic field (B) that can be attributed in a clear way to the formation of compressible and incompressible states of the system. The orbital and spin angular momenta, the total energy, ionization and electron chemical potentials of the ground state, as well as the frequencies of far-infrared edge modes are calculated as a function of B, and compared with available experimental and theoretical results.Comment: Typeset using Revtex, 17 pages and 13 Postscript figure

    Time-to-care metrics in patients with interhospital transfer for mechanical thrombectomy in north-east Germany: primary telestroke centers in rural areas vs. primary stroke centers in a metropolitan area.

    Get PDF
    BACKGROUND: Mechanical thrombectomy (MT) is highly effective in large vessel occlusion (LVO) stroke. In north-east Germany, many rural hospitals do not have continuous neurological expertise onsite and secondary transport to MT capable comprehensive stroke centers (CSC) is necessary. In metropolitan areas, small hospitals often have neurology departments, but cannot perform MT. Thus, interhospital transport to CSCs is also required. Here, we compare time-to-care metrics and outcomes in patients receiving MT after interhospital transfer from primary stroke centers (PCSs) to CSCs in rural vs. metropolitan areas. METHODS: Patients from ten rural telestroke centers (RTCs) and nine CSCs participated in this study under the quality assurance registry for thrombectomies of the Acute Neurological care in North-east Germany with TeleMedicine (ANNOTeM) telestroke network. For the metropolitan area, we included patients admitted to 13 hospitals without thrombectomy capabilities (metropolitan primary stroke centers, MPSCs) and transferred to two CSCs. We compared groups regarding baseline variables, time-to-care metrics, clinical, and technical outcomes. RESULTS: Between October 2018 and June 2022, 50 patients were transferred from RTCs within the ANNOTeM network and 42 from MPSCs within the Berlin metropolitan area. RTC patients were older (77 vs. 72 yrs, p = 0.05) and had more severe strokes (NIHSS 17 vs. 10 pts., p < 0.01). In patients with intravenous thrombolysis (IVT; 34.0 and 40.5%, respectively), time from arrival at the primary stroke center to start of IVT was longer in RTCs (65 vs. 37 min, p < 0.01). However, RTC patients significantly quicker underwent groin puncture at CSCs (door-to-groin time: 42 vs. 60 min, p < 0.01). Despite longer transport distances from RTCs to CSCs (55 vs. 22 km, p < 0.001), there was no significant difference of times between arrival at the PSC and groin puncture (210 vs. 208 min, p = 0.96). In adjusted analyses, there was no significant difference in clinical and technical outcomes. CONCLUSION: Despite considerable differences in the setting of stroke treatment in rural and metropolitan areas, overall time-to-care metrics were similar. Targets of process improvement should be door-to-needle times in RTCs, transfer organization, and door-to-groin times in CSCs wherever such process times are above best-practice models

    Generic health literacy measurement instruments for children and adolescents:a systematic review of the literature

    Get PDF
    Background Health literacy is an important health promotion concern and recently children and adolescents have been the focus of increased academic attention. To assess the health literacy of this population, researchers have been focussing on developing instruments to measure their health literacy. Compared to the wider availability of instruments for adults, only a few tools are known for younger age groups. The objective of this study is to systematically review the field of generic child and adolescent health literacy measurement instruments that are currently available. Method A systematic literature search was undertaken in five databases (PubMed, CINAHL, PsycNET, ERIC, and FIS) on articles published between January 1990 and July 2015, addressing children and adolescents ?18 years old. Eligible articles were analysed, data was extracted, and synthesised according to review objectives. Results Fifteen generic health literacy measurement instruments for children and adolescents were identified. All, except two, are self-administered instruments. Seven are objective measures (performance-based tests), seven are subjective measures (self-reporting), and one uses a mixed-method measurement. Most instruments applied a broad and multidimensional understanding of health literacy. The instruments were developed in eight different countries, with most tools originating in the United States (n =?6). Among the instruments, 31 different components related to health literacy were identified. Accordingly, the studies exhibit a variety of implicit or explicit conceptual and operational definitions, and most instruments have been used in schools and other educational contexts. While the youngest age group studied was 7-year-old children within a parent-child study, there is only one instrument specifically designed for primary school children and none for early years. Conclusions Despite the reported paucity of health literacy research involving children and adolescents, an unexpected number of health literacy measurement studies in children?s populations was found. Most instruments tend to measure their own specific understanding of health literacy and not all provide sufficient conceptual information. To advance health literacy instruments, a much more standardised approach is necessary including improved reporting on the development and validation processes. Further research is required to improve health literacy instruments for children and adolescents and to provide knowledge to inform effective interventionspublishersversionPeer reviewe

    Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station

    Get PDF
    Knowledge of the rigidity dependence of the boron to carbon flux ratio (B/C) is important in understanding the propagation of cosmic rays. The precise measurement of the B/C ratio from 1.9 GV to 2.6 TV, based on 2.3 million boron and 8.3 million carbon nuclei collected by AMS during the first 5 years of operation, is presented. The detailed variation with rigidity of the B/C spectral index is reported for the first time. The B/C ratio does not show any significant structures in contrast to many cosmic ray models that require such structures at high rigidities. Remarkably, above 65 GV, the B/C ratio is well described by a single power law R[superscript Δ] with index Δ=-0.333±0.014(fit)±0.005(syst), in good agreement with the Kolmogorov theory of turbulence which predicts Δ=-1/3 asymptotically.National Science Foundation (U.S.) (Grants 1455202 and 1551980)Wyle Research (Firm) (Grant 2014/T72497)United States. National Aeronautics and Space Administration (NASA Earth and Space Science Fellowship Grant HELIO15F-0005

    High statistics measurement of the positron fraction in primary cosmic rays of 0.5-500 GeV with the alpha magnetic spectrometer on the international space station

    Get PDF
    A precision measurement by AMS of the positron fraction in primary cosmic rays in the energy range from 0.5 to 500 GeV based on 10.9 million positron and electron events is presented. This measurement extends the energy range of our previous observation and increases its precision. The new results show, for the first time, that above &sim;200GeV the positron fraction no longer exhibits an increase with energy.</p

    Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station

    Get PDF
    Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at &sim;30GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.</p

    Properties of Neon, Magnesium, and Silicon Primary Cosmic Rays Results from the Alpha Magnetic Spectrometer

    Get PDF
    We report the observation of new properties of primary cosmic rays, neon (Ne), magnesium (Mg), and silicon (Si), measured in the rigidity range 2.15 GV to 3.0 TV with 1.8 × 106^{6} Ne, 2.2 × 106^{6} Mg, and 1.6 × 106^{6} Si nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. The Ne and Mg spectra have identical rigidity dependence above 3.65 GV. The three spectra have identical rigidity dependence above 86.5 GV, deviate from a single power law above 200 GV, and harden in an identical way. Unexpectedly, above 86.5 GV the rigidity dependence of primary cosmic rays Ne, Mg, and Si spectra is different from the rigidity dependence of primary cosmic rays He, C, and O. This shows that the Ne, Mg, and Si and He, C, and O are two different classes of primary cosmic rays
    corecore