Within Current Density Functional Theory, we have studied a quantum dot made
of 210 electrons confined in a disk geometry. The ground state of this large
dot exhibits some features as a function of the magnetic field (B) that can be
attributed in a clear way to the formation of compressible and incompressible
states of the system. The orbital and spin angular momenta, the total energy,
ionization and electron chemical potentials of the ground state, as well as the
frequencies of far-infrared edge modes are calculated as a function of B, and
compared with available experimental and theoretical results.Comment: Typeset using Revtex, 17 pages and 13 Postscript figure