9 research outputs found
Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory
Data from the Pierre Auger Observatory are analyzed to search for
anisotropies near the direction of the Galactic Centre at EeV energies. The
exposure of the surface array in this part of the sky is already significantly
larger than that of the fore-runner experiments. Our results do not support
previous findings of localized excesses in the AGASA and SUGAR data. We set an
upper bound on a point-like flux of cosmic rays arriving from the Galactic
Centre which excludes several scenarios predicting sources of EeV neutrons from
Sagittarius . Also the events detected simultaneously by the surface and
fluorescence detectors (the `hybrid' data set), which have better pointing
accuracy but are less numerous than those of the surface array alone, do not
show any significant localized excess from this direction.Comment: Matches published versio
An upper limit to the photon fraction in cosmic rays above 10^19 eV from the Pierre Auger Observatory
An upper limit of 16% (at 95% c.l.) is derived for the photon fraction in cosmic rays with energies above 10^19 eV, based on observations of the depth of shower maximum performed with the hybrid detector of the Pierre Auger Observatory. This is the first such limit on photons obtained by observing the fluorescence light profile of air showers. This upper limit confirms and improves on previous results from the Haverah Park and AGASA surface arrays. Additional data recorded with the Auger surface detectors for a subset of the event sample, support the conclusion that a photon origin of the observed events is not favoured
Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory
Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius A. Also the events detected simultaneously by the surface and fluorescence detectors (the 'hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction. © 2006 Elsevier B.V. All rights reserved
An upper limit to the photon fraction in cosmic rays above 1019 eV from the Pierre Auger Observatory
An upper limit of 16% (at 95% c.l.) is derived for the photon fraction in cosmic rays with energies greater than 1019 eV, based on observations of the depth of shower maximum performed with the hybrid detector of the Pierre Auger Observatory. This is the first such limit on photons obtained by observing the fluorescence light profile of air showers. This upper limit confirms and improves on previous results from the Haverah Park and AGASA surface arrays. Additional data recorded with the Auger surface detectors for a subset of the event sample support the conclusion that a photon origin of the observed events is not favored. © 2006 Elsevier B.V. All rights reserved
An upper limit to the photon fraction in cosmic rays above 10^19 eV from the Pierre Auger Observatory
31 pages, 11 figures, 2 tables. Minor changes, appendix expanded, conclusions unchanged; accepted by Astroparticle PhysicsAn upper limit of 16% (at 95% c.l.) is derived for the photon fraction in cosmic rays with energies greater than 10^19 eV, based on observations of the depth of shower maximum performed with the hybrid detector of the Pierre Auger Observatory. This is the first such limit on photons obtained by observing the fluorescence light profile of air showers. This upper limit confirms and improves on previous results from the Haverah Park and AGASA surface arrays. Additional data recorded with the Auger surface detectors for a subset of the event sample, support the conclusion that a photon origin of the observed events is not favored
An upper limit to the photon fraction in cosmic rays above 10(19) eV from the Pierre Auger Observatory
An upper limit of 16% (at 95% c.l.) is derived for the photon fraction in cosmic rays with energies greater than 1019 eV, based on observations of the depth of shower maximum performed with the hybrid detector of the Pierre Auger Observatory. This is the first such limit on photons obtained by observing the fluorescence light profile of air showers. This upper limit confirms and improves on previous results from the Haverah Park and AGASA surface arrays. Additional data recorded with the Auger surface detectors for a subset of the event sample support the conclusion that a photon origin of the observed events is not favored.J. Abraham, ..., R.W. Clay, S.B. Clay, ..., B. R. Dawson..., J. Sorokin, ..., M. G. Winnick, et al.http://www.elsevier.com/wps/find/journaldescription.cws_home/523319/description#descriptio