60 research outputs found

    The burden of neglected tropical diseases in Ethiopia, and opportunities for integrated control and elimination

    Get PDF
    Background: Neglected tropical diseases (NTDs) are a group of chronic parasitic diseases and related conditions that are the most common diseases among the 2·7 billion people globally living on less than US$2 per day. In response to the growing challenge of NTDs, Ethiopia is preparing to launch a NTD Master Plan. The purpose of this review is to underscore the burden of NTDs in Ethiopia, highlight the state of current interventions, and suggest ways forward. Results: This review indicates that NTDs are significant public health problems in Ethiopia. From the analysis reported here, Ethiopia stands out for having the largest number of NTD cases following Nigeria and the Democratic Republic of Congo. Ethiopia is estimated to have the highest burden of trachoma, podoconiosis and cutaneous leishmaniasis in sub-Saharan Africa (SSA), the second highest burden in terms of ascariasis, leprosy and visceral leishmaniasis, and the third highest burden of hookworm. Infections such as schistosomiasis, trichuriasis, lymphatic filariasis and rabies are also common. A third of Ethiopians are infected with ascariasis, one quarter is infected with trichuriasis and one in eight Ethiopians lives with hookworm or is infected with trachoma. However, despite these high burdens of infection, the control of most NTDs in Ethiopia is in its infancy. In terms of NTD control achievements, Ethiopia reached the leprosy elimination target of 1 case/10,000 population in 1999. No cases of human African trypanosomiasis have been reported since 1984. Guinea worm eradication is in its final phase. The Onchocerciasis Control Program has been making steady progress since 2001. A national blindness survey was conducted in 2006 and the trachoma program has kicked off in some regions. Lymphatic Filariasis, podoconiosis and rabies mapping are underway. Conclusion: Ethiopia bears a significant burden of NTDs compared to other SSA countries. To achieve success in integrated control of NTDs, integrated mapping, rapid scale up of interventions and operational research into co implementation of intervention packages will be crucial

    Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain

    Full text link

    Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain

    Get PDF
    The enormous quantity of food wastes discarded annually force to look for alternatives for this interesting feedstock. Thus, food bio-waste valorisation is one of the imperatives of the nowadays society. This review is the most comprehensive overview of currently existing technologies and processes in this field. It tackles classical and innovative physical, physico-chemical and chemical methods of food waste pre-treatment and extraction for recovery of added value compounds and detection by modern technologies and are an outcome of the COST Action EUBIS, TD1203 Food Waste Valorisation for Sustainable Chemicals, Materials and Fuels

    Indirect Heat Transfer Technology For Waste Heat Recovery Can Save You Money

    No full text
    Several methods to recover energy from existing flue gas stacks have been successfully demonstrated in recent years. There is no one method that can be singled out as the most economical approach for all applications. Quite often the mere spatial constraints of an existing installation makes the conventional flue gas to air energy recovery technology impractical to employ. A successful alternative is the transfer of waste heat to an intermediate heat transfer fluid (i.e., DOWTHERM Heat Transfer Fluid) that eliminates the large diameter ducting associated with the direct heat transfer technology. This paper presents a method to project, during the preliminary engineering phase of a flue gas energy recovery project, the capital cost and payback period for systems utilizing DOWTHERM fluids. This method is demonstrated by completing the simplified economic analysis of several example projects ranging in size from 5 to 40 million Btu/hr of recoverable energy

    The phase equilibrium phenomenon in model hydrogenation of oleic acid

    Get PDF
    Hydrogenation is one of the most commonly practised types of reaction in industry. The processing of low or null price feedstock to produce energy through hydrogenation is an interesting solution for waste valorisation. The hydrogenation in CO2 atmosphere offers a series of advantages and facilitates the process by the dramatic reduction of normally harsh reaction conditions. The hydrogenation of natural feedstock with complex matrix is a challenging task and the examination of the phase equilibrium of this system is crucial to understand the phenomena driving the kinetics of the hydrogenation reaction. High pressure phase equilibrium modelling is a key method to design and to analyse the obtained data and helps to understand the hydrogenation reaction outcome. The increase of H2 pressure does not translate to the increase of hydrogen solubility in the liquid phase due to the significant decrease of CO2 solubility in oleic acid. The obtained data confirm that both thermodynamics and kinetics play an important role in the hydrogenation of cattle fat in the presence of CO2

    Ionic liquids’ cation and anion influence on aromatic amine solubility

    No full text
    he mutual solubility of aniline and a series of imidazolium based ionic liquids with bis(trifluoromethylsulfonyl)amide, chloride, dicyanamide, tetrafluoroborate, and hexafluorophospate anions were studied. The produced results show the potential in the new solvent systems which can be used in amine chemistry. The liquid–liquid equilibrium (LLE) and solid–liquid equilibrium (SLE) measurements were performed using a dynamic (synthetic) method. The mutual solubility of aniline in bis(trifluoromethylsulfonyl)amide and hexafluorophosphate ionic liquids was complete in the examined range of temperatures. The solubility of remaining studied ionic liquids decreases with the decrease of Kamlet–Taft basicity of ionic liquid anion. In other words, the solubility was the lowest for a chloride ionic liquid and increases for dicyanamide and for tetrafluoroborate ionic liquids. Additionally, the increase of the alkyl chain length of the IL cation effects negatively the solubility of aniline in the investigated ionic liquids
    corecore