83 research outputs found
Nrt1 and Tna1-Independent Export of NAD+ Precursor Vitamins Promotes NAD+ Homeostasis and Allows Engineering of Vitamin Production
NAD+ is both a co-enzyme for hydride transfer enzymes and a
substrate of sirtuins and other NAD+ consuming enzymes.
NAD+ biosynthesis is required for two different regimens
that extend lifespan in yeast. NAD+ is synthesized from
tryptophan and the three vitamin precursors of NAD+: nicotinic
acid, nicotinamide and nicotinamide riboside. Supplementation of yeast cells
with NAD+ precursors increases intracellular
NAD+ levels and extends replicative lifespan. Here we show
that both nicotinamide riboside and nicotinic acid are not only vitamins but are
also exported metabolites. We found that the deletion of the nicotinamide
riboside transporter, Nrt1, leads to increased export of nicotinamide riboside.
This discovery was exploited to engineer a strain to produce high levels of
extracellular nicotinamide riboside, which was recovered in purified form. We
further demonstrate that extracellular nicotinamide is readily converted to
extracellular nicotinic acid in a manner that requires intracellular
nicotinamidase activity. Like nicotinamide riboside, export of nicotinic acid is
elevated by the deletion of the nicotinic acid transporter, Tna1. The data
indicate that NAD+ metabolism has a critical extracellular
element in the yeast system and suggest that cells regulate intracellular
NAD+ metabolism by balancing import and export of
NAD+ precursor vitamins
Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs
published_or_final_versio
Direct observations of the effect of fine sediment deposition on the vertical movement of Gammarus pulex (Amphipoda: Gammaridae) during substratum drying
Benthic macroinvertebrates inhabit the streambed sediments of temporary streams during drying events. Fine sediment (< 2 mm in diameter) deposition and clogging of interstitial pathways reduces the connectivity between benthic and subsurface habitats, potentially inhibiting macroinvertebrate vertical movements. Direct observations within subsurface sediments are, however, inherently difficult. As a result, confirmation of macroinvertebrate vertical movement, and the effect of fine sediment, is limited. We used laboratory mesocosms containing transparent gravel sized particles (10–15 mm) to facilitate the direct observation and tracking of vertical movements by Gammarus pulex in response to water level reduction and sedimentation. Seven sediment treatments comprised two fine sediment fractions (small: 0.125–0.5 mm, coarse sand: 0.5–1 mm) deposited onto the surface of the substrate, and a control treatment where no fine sediment was applied. We found that G. pulex moved into the subsurface gravel sediments in response to drying, but their ability to remain submerged during water level reduction was impeded by fine sediment deposition. In particular deposition of the coarser sand fraction clogged the sediment surface, limiting vertical movements. Our results highlight the potential effect of sedimentation on G. pulex resistance to drying events in streams
The Caenorhabditis elegans HNF4α Homolog, NHR-31, Mediates Excretory Tube Growth and Function through Coordinate Regulation of the Vacuolar ATPase
Nuclear receptors of the Hepatocyte Nuclear Factor-4 (HNF4) subtype have been linked to a host of developmental and metabolic functions in animals ranging from worms to humans; however, the full spectrum of physiological activities carried out by this nuclear receptor subfamily is far from established. We have found that the Caenorhabditis elegans nuclear receptor NHR-31, a homolog of mammalian HNF4 receptors, is required for controlling the growth and function of the nematode excretory cell, a multi-branched tubular cell that acts as the C. elegans renal system. Larval specific RNAi knockdown of nhr-31 led to significant structural abnormalities along the length of the excretory cell canal, including numerous regions of uncontrolled growth at sites near to and distant from the cell nucleus. nhr-31 RNAi animals were sensitive to acute challenge with ionic stress, implying that the osmoregulatory function of the excretory cell was also compromised. Gene expression profiling revealed a surprisingly specific role for nhr-31 in the control of multiple genes that encode subunits of the vacuolar ATPase (vATPase). RNAi of these vATPase genes resulted in excretory cell defects similar to those observed in nhr-31 RNAi animals, demonstrating that the influence of nhr-31 on excretory cell growth is mediated, at least in part, through coordinate regulation of the vATPase. Sequence analysis revealed a stunning enrichment of HNF4α type binding sites in the promoters of both C. elegans and mouse vATPase genes, arguing that coordinate regulation of the vATPase by HNF4 receptors is likely to be conserved in mammals. Our study establishes a new pathway for regulation of excretory cell growth and reveals a novel role for HNF4-type nuclear receptors in the development and function of a renal system
A Serum Factor Induces Insulin-Independent Translocation of GLUT4 to the Cell Surface which Is Maintained in Insulin Resistance
In response to insulin, glucose transporter GLUT4 translocates from intracellular compartments towards the plasma membrane where it enhances cellular glucose uptake. Here, we show that sera from various species contain a factor that dose-dependently induces GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes, human adipocytes, myoblasts and myotubes. Notably, the effect of this factor on GLUT4 is fully maintained in insulin-resistant cells. Our studies demonstrate that the serum-induced increase in cell surface GLUT4 levels is not due to inhibition of its internalization and is not mediated by insulin, PDGF, IGF-1, or HGF. Similarly to insulin, serum also augments cell surface levels of GLUT1 and TfR. Remarkably, the acute effect of serum on GLUT4 is largely additive to that of insulin, while it also sensitizes the cells to insulin. In accordance with these findings, serum does not appear to activate the same repertoire of downstream signaling molecules that are implicated in insulin-induced GLUT4 translocation. We conclude that in addition to insulin, at least one other biological proteinaceous factor exists that contributes to GLUT4 regulation and still functions in insulin resistance. The challenge now is to identify this factor
Catastrophic NAD+ Depletion in Activated T Lymphocytes through Nampt Inhibition Reduces Demyelination and Disability in EAE
Nicotinamide phosphoribosyltransferase (Nampt) inhibitors such as FK866 are potent inhibitors of NAD+ synthesis that show promise for the treatment of different forms of cancer. Based on Nampt upregulation in activated T lymphocytes and on preliminary reports of lymphopenia in FK866 treated patients, we have investigated FK866 for its capacity to interfere with T lymphocyte function and survival. Intracellular pyridine nucleotides, ATP, mitochondrial function, viability, proliferation, activation markers and cytokine secretion were assessed in resting and in activated human T lymphocytes. In addition, we used experimental autoimmune encephalomyelitis (EAE) as a model of T-cell mediated autoimmune disease to assess FK866 efficacy in vivo. We show that activated, but not resting, T lymphocytes undergo massive NAD+ depletion upon FK866-mediated Nampt inhibition. As a consequence, impaired proliferation, reduced IFN-γ and TNF-α production, and finally autophagic cell demise result. We demonstrate that upregulation of the NAD+-degrading enzyme poly-(ADP-ribose)-polymerase (PARP) by activated T cells enhances their susceptibility to NAD+ depletion. In addition, we relate defective IFN-γ and TNF-α production in response to FK866 to impaired Sirt6 activity. Finally, we show that FK866 strikingly reduces the neurological damage and the clinical manifestations of EAE. In conclusion, Nampt inhibitors (and possibly Sirt6 inhibitors) could be used to modulate T cell-mediated immune responses and thereby be beneficial in immune-mediated disorders
The kynurenine pathway activities in a sub-Saharan HIV/AIDS population
BACKGROUND : Tryptophan is an essential amino acid for the synthesis of proteins and important metabolites such as
serotonin, melatonin, tryptamine and niacin. After protein synthesis, more than 90 % of tryptophan catabolism
occurs along the kynurenine pathway. The inflammation-inducible enzyme indoleamine 2,3 dioxygenase (IDO) is
responsible for the first rate-limiting step in the kynurenine pathway, i.e., oxidation of tryptophan to kynurenine.
Excessive IDO activity in conditions such as HIV/AIDS may lead to tryptophan depletion and accumulation of
metabolites downstream from kynurenine. Little is known about the kynurenine pathway of HIV/AIDS patients in
sub-Saharan regions. This study, in a low income sub-Saharan HIV/AIDS population, examined the effects of
activities in the kynurenine pathway on plasma levels of tryptophan, kynurenine and the neurotoxin quinolinic acid,
and on de novo synthesis of nicotinamide.
METHODS : Plasma samples were obtained from a cohort of 105 HIV patients and 60 controls. Kynurenine pathway
metabolites were analysed using gas chromatography – mass spectrometry. ELISA and flow cytometry were used
to assess plasma inflammatory markers.
RESULTS : IDO activity, depletion of tryptophan, as well as accumulation of kynurenine and the neurotoxin quinolinic
acid, were not only significantly greater in the patients than in the controls, but also markedly greater than in
HIV/AIDS patients from developed countries. Tryptophan levels were 12.3 % higher, kynurenine levels 16.2 % lower,
quinolinic acid levels 43.2 % lower and nicotinamide levels 27,2 % lower in patients on antiretroviral treatment than
in antiretroviral-naïve patients. Patients’ kynurenine pathway metabolites correlated with the levels of inflammatory
markers, including that of the major IDO-inducer, interferon-gamma. Indications are that the rate of de novo
synthesis of nicotinamide in the kynurenine pathway correlates with increases in quinolinic acid levels up to a point
where saturation of the enzyme quinolinate phosphoribosyl transferase occurs.
CONCLUSIONS : Higher levels of inflammatory activity in this low income sub-Saharan HIV/AIDS population than in
patients from developed countries lead to greater tryptophan depletion and greater accumulation of metabolites
downstream from tryptophan with quinolinic acid levels often reaching levels associated with the development of
HIV/AIDS-associated neurocognitive dysfunction. De novo synthesis of nicotinamide from quinolinic acid contributes
to the maintenance of nicotinamide, and by implication NAD levels, in HIV/AIDS patients from low income
populations. Antiretroviral treatment partially corrects disturbances in the kynurenine pathway.Medical Research Council of South Africa and the South African Sugar Association (SASA Project 213).http://www.biomedcentral.com/bmcinfectdis/hb201
All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run
We present results from a search for gravitational-wave bursts in the data
collected by the LIGO and Virgo detectors between July 7, 2009 and October 20,
2010: data are analyzed when at least two of the three LIGO-Virgo detectors are
in coincident operation, with a total observation time of 207 days. The
analysis searches for transients of duration < 1 s over the frequency band
64-5000 Hz, without other assumptions on the signal waveform, polarization,
direction or occurrence time. All identified events are consistent with the
expected accidental background. We set frequentist upper limits on the rate of
gravitational-wave bursts by combining this search with the previous LIGO-Virgo
search on the data collected between November 2005 and October 2007. The upper
limit on the rate of strong gravitational-wave bursts at the Earth is 1.3
events per year at 90% confidence. We also present upper limits on source rate
density per year and Mpc^3 for sample populations of standard-candle sources.
As in the previous joint run, typical sensitivities of the search in terms of
the root-sum-squared strain amplitude for these waveforms lie in the range 5
10^-22 Hz^-1/2 to 1 10^-20 Hz^-1/2. The combination of the two joint runs
entails the most sensitive all-sky search for generic gravitational-wave bursts
and synthesizes the results achieved by the initial generation of
interferometric detectors.Comment: 15 pages, 7 figures: data for plots and archived public version at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=70814&version=19, see
also the public announcement at
http://www.ligo.org/science/Publication-S6BurstAllSky
- …