6 research outputs found

    Beneficial and nature-based sediment use - Experiences from Dutch pilots

    No full text
    The natural sediment cycle is disrupted and impacted by human interventions world-wide, such as dams in rivers, port developments in estuaries, dredging activities for the maintenance of existing ports and waterways, and pollution from industrial activities. Coasts, shores, lakes and rivers suffer from an imbalance in sediment quantity and poor sediment quality. This impacts human industrial activities (e.g. navigation, logistic and tourism), life and safety (e.g. space for living, flood safety, food security and loss of productivity). In addition, shortage of sand cause by excessive sand mining or lack of sand in the environment in many locations of the world brings a special focus on fine and soft sediment, generally considered an unsuitable resource if not a contaminated waste. In line with this world-wide demand, EcoShape - Building with Nature is executing various pilots in the Netherlands and Indonesia to improve knowledge and demonstrate practical nature-based solutions regarding management, use and reuse of (fine and soft) sediments. These pilots are bonded in the EcoShape Living Lab for Mud initiative. These pilots cover the entire range from sediment in suspension to sediment as building material, embedding ecology, operations as well as socio-economic considerations. This presentation will focus on two of these pilots located in the Netherlands: the Mud Motor and de Kleirijperij (also part of the Eems-Dollard 2050 program). The Mud Motor explored potential for beneficial use of dredge sediments to feed salt marshes, through strategic disposal and optimal use of natural processes. The Kleirijperij studies the technical and financial feasibility of turning dredge sediments into clay-soil for dike construction. During the presentations we will focus on technical results as well as governance challenges and triggers critical for the realization of sustainable beneficial sediment use projects. These pilots and this presentation tight also to the 2017 CEDA and the 2018 PIANC working groups on Beneficial Sediment Use.</p

    Beneficial and nature-based sediment use - Experiences from Dutch pilots

    No full text
    The natural sediment cycle is disrupted and impacted by human interventions world-wide, such as dams in rivers, port developments in estuaries, dredging activities for the maintenance of existing ports and waterways, and pollution from industrial activities. Coasts, shores, lakes and rivers suffer from an imbalance in sediment quantity and poor sediment quality. This impacts human industrial activities (e.g. navigation, logistic and tourism), life and safety (e.g. space for living, flood safety, food security and loss of productivity). In addition, shortage of sand cause by excessive sand mining or lack of sand in the environment in many locations of the world brings a special focus on fine and soft sediment, generally considered an unsuitable resource if not a contaminated waste. In line with this world-wide demand, EcoShape - Building with Nature is executing various pilots in the Netherlands and Indonesia to improve knowledge and demonstrate practical nature-based solutions regarding management, use and reuse of (fine and soft) sediments. These pilots are bonded in the EcoShape Living Lab for Mud initiative. These pilots cover the entire range from sediment in suspension to sediment as building material, embedding ecology, operations as well as socio-economic considerations. This presentation will focus on two of these pilots located in the Netherlands: the Mud Motor and de Kleirijperij (also part of the Eems-Dollard 2050 program). The Mud Motor explored potential for beneficial use of dredge sediments to feed salt marshes, through strategic disposal and optimal use of natural processes. The Kleirijperij studies the technical and financial feasibility of turning dredge sediments into clay-soil for dike construction. During the presentations we will focus on technical results as well as governance challenges and triggers critical for the realization of sustainable beneficial sediment use projects. These pilots and this presentation tight also to the 2017 CEDA and the 2018 PIANC working groups on Beneficial Sediment Use.</p

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3–7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease

    Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory

    No full text
    The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV–EeV energy range using the Antares, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within ±500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of \sim1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2^2 at a luminosity distance of 408+840^{+8}_{-8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Msun. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at \sim40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over \sim10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position \sim9 and \sim16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. (Abridged

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease
    corecore