160 research outputs found
A patient-specific study of type-B aortic dissection: evaluation of true-false lumen blood exchange
Background: Aortic dissection is a severe pathological condition in which blood penetrates between layers of the aortic wall and creates a duplicate channel – the false lumen. This considerable change on the aortic morphology alters hemodynamic features dramatically and, in the case of rupture, induces markedly high rates of morbidity and mortality.
Methods: In this study, we establish a patient-specific computational model and simulate the pulsatile blood flow within the dissected aorta. The k-ω SST turbulence model is employed to represent the flow and finite volume method is applied for numerical solutions. Our emphasis is on flow exchange between true and false lumen during the cardiac cycle and on quantifying the flow across specific passages. Loading distributions including pressure and wall shear stress have also been investigated and results of direct simulations are compared with solutions employing appropriate turbulence models.
Results: Our results indicate that (i) high velocities occur at the periphery of the entries; (ii) for the case studied, approximately 40% of the blood flow passes the false lumen during a heartbeat cycle; (iii) higher pressures are found at the outer wall of the dissection, which may induce further dilation of the pseudo-lumen; (iv) highest wall shear stresses occur around the entries, perhaps indicating the vulnerability of this region to further splitting; and (v) laminar simulations with adequately fine mesh resolutions, especially refined near the walls, can capture similar flow patterns to the (coarser mesh) turbulent results, although the absolute magnitudes computed are in general smaller.
Conclusions: The patient-specific model of aortic dissection provides detailed flow information of blood transport within the true and false lumen and quantifies the loading distributions over the aorta and dissection walls. This contributes to evaluating potential thrombotic behavior in the false lumen and is pivotal in guiding endovascular intervention. Moreover, as a computational study, mesh requirements to successfully evaluate the hemodynamic parameters have been proposed
Synthesis and Investigation of a Radioiodinated F3 Peptide Analog as a SPECT Tumor Imaging Radioligand
A radioiodinated derivative of the tumor-homing F3 peptide, (N-(2-{3-[125I]Iodobenzoyl}aminoethyl)maleimide-F3Cys peptide, [125I]IBMF3 was developed for investigation as a SPECT tumor imaging radioligand. For this purpose, we custom synthesized a modified F3 peptide analog (F3Cys) incorporating a C-terminal cysteine residue for site-specific attachment of a radioiodinated maleimide conjugating group. Initial proof-of-concept Fluorescence studies conducted with AlexaFluor 532 C5 maleimide-labeled F3Cys showed distinct membrane and nuclear localization of F3Cys in MDA-MB-435 cells. Additionally, F3Cys conjugated with NIR fluorochrome AlexaFluor 647 C2 maleimide demonstrated high tumor specific uptake in melanoma cancer MDA-MB-435 and lung cancer A549 xenografts in nude mice whereas a similarly labeled control peptide did not show any tumor uptake. These results were also confirmed by ex vivo tissue analysis. No-carrier-added [125I]IBMF3 was synthesized by a radioiododestannylation approach in 73% overall radiochemical yield. In vitro cell uptake studies conducted with [125I]IBMF3 displayed a 5-fold increase in its cell uptake at 4 h when compared to controls. SPECT imaging studies with [125I]IBMF3 in tumor bearing nude mice showed clear visualization of MDA-MB-435 xenografts on systemic administration. These studies demonstrate a potential utility of F3 peptide-based radioligands for tumor imaging with PET or SPECT techniques
DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway
Stabilization of mutant p53 (mutp53) in tumours greatly contributes to malignant progression. However, little is known about the underlying mechanisms and therapeutic approaches to destabilize mutp53. Here, through high-throughput screening we identify statins, cholesterol-lowering drugs, as degradation inducers for conformational or misfolded p53 mutants with minimal effects on wild-type p53 (wtp53) and DNA contact mutants. Statins preferentially suppress mutp53-expressing cancer cell growth. Specific reduction of mevalonate-5-phosphate by statins or mevalonate kinase knockdown induces CHIP ubiquitin ligase-mediated nuclear export, ubiquitylation, and degradation of mutp53 by impairing interaction of mutp53 with DNAJA1, a Hsp40 family member. Knockdown of DNAJA1 also induces CHIP-mediated mutp53 degradation, while its overexpression antagonizes statin-induced mutp53 degradation. Our study reveals that DNAJA1 controls the fate of misfolded mutp53, provides insights into potential strategies to deplete mutp53 through the mevalonate pathway–DNAJA1 axis, and highlights the significance of p53 status in impacting statins’ efficacy on cancer therapy
Solution structure and dynamic analysis of chicken MBD2 methyl binding domain bound to a target-methylated DNA sequence
The epigenetic code of DNA methylation is interpreted chiefly by methyl cytosine binding domain (MBD) proteins which in turn recruit multiprotein co-repressor complexes. We previously isolated one such complex, MBD2-NuRD, from primary erythroid cells and have shown it contributes to embryonic/fetal β-type globin gene silencing during development. This complex has been implicated in silencing tumor suppressor genes in a variety of human tumor cell types. Here we present structural details of chicken MBD2 bound to a methylated DNA sequence from the ρ-globin promoter to which it binds in vivo and mediates developmental transcriptional silencing in normal erythroid cells. While previous studies have failed to show sequence specificity for MBD2 outside of the symmetric mCpG, we find that this domain binds in a single orientation on the ρ-globin target DNA sequence. Further, we show that the orientation and affinity depends on guanine immediately following the mCpG dinucleotide. Dynamic analyses show that DNA binding stabilizes the central β-sheet, while the N- and C-terminal regions of the protein maintain mobility. Taken together, these data lead to a model in which DNA binding stabilizes the MBD2 structure and that binding orientation and affinity is influenced by the DNA sequence surrounding the central mCpG
Induction of effective and antigen-specific antitumour immunity by a liposomal ErbB2/HER2 peptide-based vaccination construct
Efficient delivery of tumour-associated antigens to appropriate cellular compartments of antigen-presenting cells is of prime importance for the induction of potent, cell-mediated antitumour immune responses. We have designed novel multivalent liposomal constructs that co-deliver the p63–71 cytotoxic T Lymphocyte epitope derived from human ErbB2 (HER2), and HA307–319, a T-helper (Th) epitope derived from influenza haemagglutinin. Both peptides were conjugated to the surface of liposomes via a Pam3CSS anchor, a synthetic lipopeptide with potent adjuvant activity. In a murine model system, vaccination with these constructs completely protected BALB/c mice from subsequent s.c. challenge with ErbB2-expressing, but not ErbB2-negative, murine renal carcinoma (Renca) cells, indicating the induction of potent, antigen-specific immune responses. I.v. re-challenge of tumour-free animals 2 months after the first tumour cell inoculation did not result in the formation of lung tumour nodules, suggesting that long-lasting, systemic immunity had been induced. While still protecting the majority of vaccinated mice, a liposomal construct lacking the Th epitope was less effective than the diepitope construct, also correlating with a lower number of CD8+ IFN-γ+ T-cells identified upon ex vivo peptide restimulation of splenocytes from vaccinated animals. Importantly, in a therapeutic setting treatment with the liposomal vaccines resulted in cures in the majority of tumour-bearing mice and delayed tumour growth in the remaining ones. Our results demonstrate that liposomal constructs which combine Tc and Th peptide antigens and lipopeptide adjuvants can induce efficient, antigen-specific antitumour immunity, and represent promising synthetic delivery systems for the design of specific antitumour vaccines
Multifunctional Compounds for Activation of the p53‐Y220C Mutant in Cancer
The p53 protein plays a major role in cancer prevention, and over 50 % of cancer diagnoses can be attributed to p53 malfunction. The common p53 mutation Y220C causes local protein unfolding, aggregation, and can result in a loss of Zn in the DNA‐binding domain. Structural analysis has shown that this mutant creates a surface site that can be stabilized using small molecules, and herein a multifunctional approach to restore function to p53‐Y220C is reported. A series of compounds has been designed that contain iodinated phenols aimed for interaction and stabilization of the p53‐Y220C surface cavity, and Zn‐binding fragments for metallochaperone activity. Their Zn‐binding affinity was characterized using spectroscopic methods and demonstrate the ability of compounds L4 and L5 to increase intracellular levels of Zn2+ in a p53‐Y220C‐mutant cell line. The in vitro cytotoxicity of our compounds was initially screened by the National Cancer Institute (NCI‐60), followed by testing in three stomach cancer cell lines with varying p53 status’, including AGS (WTp53), MKN1 (V143A), and NUGC3 (Y220C). Our most promising ligand, L5, is nearly 3‐fold more cytotoxic than cisplatin in a large number of cell lines. The impressive cytotoxicity of L5 is further maintained in a NUGC3 3D spheroid model. L5 also induces Y220C‐specific apoptosis in a cleaved caspase‐3 assay, reduces levels of unfolded mutant p53, and recovers p53 transcriptional function in the NUGC3 cell line. These results show that these multifunctional scaffolds have the potential to restore wild‐type function in mutant p53‐Y220C
Ensemble-Based Computational Approach Discriminates Functional Activity of p53 Cancer and Rescue Mutants
The tumor suppressor protein p53 can lose its function upon single-point missense mutations in the core DNA-binding domain (“cancer mutants”). Activity can be restored by second-site suppressor mutations (“rescue mutants”). This paper relates the functional activity of p53 cancer and rescue mutants to their overall molecular dynamics (MD), without focusing on local structural details. A novel global measure of protein flexibility for the p53 core DNA-binding domain, the number of clusters at a certain RMSD cutoff, was computed by clustering over 0.7 µs of explicitly solvated all-atom MD simulations. For wild-type p53 and a sample of p53 cancer or rescue mutants, the number of clusters was a good predictor of in vivo p53 functional activity in cell-based assays. This number-of-clusters (NOC) metric was strongly correlated (r2 = 0.77) with reported values of experimentally measured ΔΔG protein thermodynamic stability. Interpreting the number of clusters as a measure of protein flexibility: (i) p53 cancer mutants were more flexible than wild-type protein, (ii) second-site rescue mutations decreased the flexibility of cancer mutants, and (iii) negative controls of non-rescue second-site mutants did not. This new method reflects the overall stability of the p53 core domain and can discriminate which second-site mutations restore activity to p53 cancer mutants
- …