1,356 research outputs found

    Correlations Between the Contributions of Individual IVS Analysis Centers

    Get PDF
    Within almost all space-geodetic techniques, contributions of different analysis centers (ACs) are combined in order to improve the robustness of the final product. So far, the contributing series are assumed to be independent as each AC processes the observations in different ways. However, the series cannot be completely independent as each analyst uses the same set of original observations and many applied models are subject to conventions used by each AC. In this paper, it is shown that neglecting correlations between the contributing series yields too optimistic formal errors and small, but insignificant, errors in the estimated parameters derived from the adjustment of the combined solution

    Phylogenetic relationships of Chanidae (Teleostei: Gonorynchiformes) as impacted by Dastilbe moraesi, from the Sanfranciscana basin, Early Cretaceous of Brazil

    Full text link
    Fossil gonorynchiform fishes range from the Lower Cretaceous to the early Miocene, and are represented by a few dozen living species. The order is currently divided into two major clades: Gonorynchoidei, which includes the families Gonorynchidae and Kneriidae, and Chanoidei, encompassing a single family, Chanidae, with a single recent species, the Indo-Pacific Chanos chanos, and several fossil taxa. Chanidae includes some poorly known taxa, such as Dastilbe moraesi, described from the Aptian (Lower Cretaceous) of the Areado Formation, Sanfranciscana basin, Brazil. This species is currently considered to be a junior synonym of the type species of its genus, Dastilbe crandalli, from Santana Formation, Aptian, northeastern Brazil. The analysis of abundant D. moraesi specimens revealed several new morphological features, many of which had previously been misinterpreted. Dastilbe moraesi was incorporated into a gonorynchiform character matrix as revised and modified for the Chanidae. We obtained a single most parsimonious tree in which D. moraesi is distinct and phylogenetically apart from D. crandalli. According our analysis, D. moraesi forms a sister pair with Chanos, a clade which is closely related to Tharrhias, all composing the tribe ChaniniGonorynchiformes fósseis ocorrem desde do Cretáceo inferior ao Mioceno inferior, e são representados por alguns representantes viventes. A ordem está dividida atualmente em dois clados principais: Gonorynchoidei, que inclui as famílias Gonorynchidae e Kneriidae, e Chanoidei, compreendendo uma única família, Chanidae, com uma única espécie vivente, Chanos chanos, do Indo-Pacífico, além de vários representantes fósseis. Chanidae inclui alguns táxons problemáticos, tais como Dastilbe moraesi, descrito do Aptiano (Cretáceo Inferior) da Formação Areado, bacia Sanfranciscana, Brasil. Esta espécie é atualmente considerada um sinônimo júnior da espécie-tipo de seu gênero, Dastilbe crandalli, da Formação Santana, Aptiano do nordeste do Brasil. A análise de abundante material de D. moraesi revelou várias novas características anatômicas, muitas das quais haviam sido previamente mal interpretadas. Dastilbe moraesi foi incorporado em uma matriz revisada de caracteres da família Chanidae. Nós obtivemos uma única árvore mais parcimoniosa na qual D. moraesi é distinto e filogeneticamente distante de D. crandalli. De acordo com nossa análise, D. moraesi é o grupo-irmão de Chanos, um clado intimamente relacionado a Tharrhias, com todos compondo a tribo ChaniniThis study was supported by CNPq (process # 401818/2010-1) and project CGL2013-42643P, Ministerio de Ciencia e Innovación de Españ

    Effects of food-borne nanomaterials on gastrointestinal tissues and microbiota

    Get PDF
    Ingestion of engineered nanomaterials is inevitable due to their addition to food and prevalence in food packaging and domestic products such as toothpaste and sun cream. In the absence of robust dosimetry and particokinetic data, it is currently challenging to accurately assess the potential toxicity of food-borne nanomaterials. Herein, we review current understanding of gastrointestinal uptake mechanisms, consider some data on the potential for toxicity of the most commonly encountered classes of food-borne nanomaterials (including TiO2 , SiO2 , ZnO, and Ag nanoparticles), and discuss the potential impact of the luminal environment on nanoparticle properties and toxicity. Much of our current understanding of gastrointestinal nanotoxicology is derived from increasingly sophisticated epithelial models that augment in vivo studies. In addition to considering the direct effects of food-borne nanomaterials on gastrointestinal tissues, including the potential role of chronic nanoparticle exposure in development of inflammatory diseases, we also discuss the potential for food-borne nanomaterials to disturb the normal balance of microbiota within the gastrointestinal tract. The latter possibility warrants close attention given the increasing awareness of the critical role of microbiota in human health and the known impact of some food-borne nanomaterials on bacterial viability. For further resources related to this article, please visit the WIREs website.</p

    Two new, remarkably colored species of the Neotropical catfish genus Cetopsorhamdia Eigenmann & Fisher, 1916 (Siluriformes, Heptapteridae) from Chapada dos Parecis, western Brazil, with an assessment of the morphological characters bearing on their phylogenetic relationships

    Get PDF
    Two new species of heptapterid catfish genus Cetopsorhamdia are described from close localities in western Brazil, at Chapada dos Parecis, an area with extremely high level of endemism. One species is from the upper Rio Madeira system, Rondônia State, and the other from the upper Rio Tapajós system, Mato Grosso State. The two species are diagnosed, among several other features, by their markedly distinctive color patterns, with the former having well-defined quadrangular marks in trunk flanks while the latter bearing irregular, vertical bars along the trunk. The monophyly of Cetopsorhamdia is discussed, with two putative synapomorphies being proposed to support the genus. Potentially informative morphological characters to resolve the internal relationships of the genus are presented and discussed. Despite the striking external differences between the two species herein described, they are found to likely form a clade

    Identification of Melatonin-Regulated Genes in the Ovine Pituitary Pars Tuberalis, a Target Site for Seasonal Hormone Control

    Get PDF
    The pars tuberalis (PT) of the pituitary gland expresses a high density of melatonin (MEL) receptors and is believed to regulate seasonal physiology by decoding changes in nocturnal melatonin secretion. Circadian clock genes are known to be expressed in the PT in response to the decline (Per1) and onset (Cry1) of MEL secretion, but to date little is known of other molecular changes in this key MEL target site. To identify transcriptional pathways that may be involved in the diurnal and photoperiod-transduction mechanism, we performed a whole genome transcriptome analysis using PT RNA isolated from sheep culled at three time points over the 24-h cycle under either long or short photoperiods. Our results reveal 153 transcripts where expression differs between photoperiods at the light-dark transition and 54 transcripts where expression level was more globally altered by photoperiod (all time points combined). Cry1 induction at night was associated with up-regulation of genes coding for NeuroD1 (neurogenic differentiation factor 1), Pbef / Nampt (nicotinamide phosphoribosyltransferase) , Hif1α (hypoxia-inducible factor-1α), and Kcnq5 (K channel) and down-regulation of Rorβ, a key clock gene regulator. Using in situ hybridization, we confirmed day-night differences in expression for Pbef / Nampt, NeuroD1, and Rorβ in the PT. Treatment of sheep with MEL increased PT expression for Cry1, Pbef / Nampt, NeuroD1, and Hif1α, but not Kcnq5. Our data thus reveal a cluster of Cry1-associated genes that are acutely responsive to MEL and novel transcriptional pathways involved in MEL action in the PT

    Running From Eden

    Get PDF

    Holes

    Get PDF

    Domestic Radio

    Get PDF

    So I Married a Republican

    Get PDF

    Anatomy and phylogenetic relationships of a new catfish species from northeastern Argentina with comments on the phylogenetic relationships of the genus Rhamdella Eigenmann and Eigenmann 1888 (Siluriformes, Heptapteridae)

    Get PDF
    Rhamdella cainguae, a new species of the family Heptapteridae is described from the Arroyo Cuña-Pirú, a tributary of the Río Paraná, in the subtropical forest of Misiones, northeastern Argentina. The presence of a large differentiated ovoid area on the supraorbital laterosensory canal along the frontal-sphenotic boundary, delimited by the slender dorsal walls of the bones, and with no foramen for a laterosensory branch, is an autapomorphy for R. cainguae. A detailed description of the skeleton and laterosensory system of R. cainguae is provided. The genus Rhamdella is rediagnosed on the basis of three autapomorphies: a very large opening in the frontal for the exit of the s6 (epiphyseal) branch of the supraorbital laterosensory canal (reversed in R. rusbyi), a large optic foramen, and a dark stripe along the lateral surface of the body (reversed in R. rusbyi). Rhamdella is considered to be the sister group of a large heptapterid clade composed of the Nemuroglanis sub-clade plus the genera Brachyglanis, Gladioglanis, Leptorhamdia, and Myoglanis. Rhamdella is herein restricted to five valid species: R. aymarae, R. cainguae, R. eriarcha, R. longiuscula, and R. rusbyi. A sister group relationship between R. aymarae and R. rusbyi is supported by three synapomorphies. Rhamdella cainguae shares 12 apomorphic features with R. eriarcha and R. longiuscula.Fil: Bockmann, Flávio. Universidade de Sao Paulo; BrasilFil: Miquelarena, Amalia Maria. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Instituto de Limnología "dr. Raul A. Ringuelet". Universidad Nacional de la Plata. Facultad de Cs.naturales y Museo. Instituto de Limnología; Argentin
    corecore