5 research outputs found

    Probing Split-Ring Resonator Permeabilities with Loop-Gap Resonators

    No full text
    A method is proposed to experimentally determine the effective complex permeability of split-ring resonator (SRR) arrays used in the design of metamaterials at microwave frequencies. We analyze the microwave response of a loop-gap resonator (LGR) whose bore has been partially loaded with one or more SRRs. Our analysis reveals that the resonance frequency, magnetic plasma frequency, and damping constant of the effective permeability of the SRR array can be extracted from fits to the reflection coefficient S11 of an inductively-coupled LGR. We propose LGR designs that would allow both a one-dimensional array of SRRs and small three-dimensional arrays of SRRs to be characterized. Finally, we demonstrate the method using a toroidal LGR loaded with a single extended SRR of length z.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy

    No full text
    International audienceThe next core-collapse supernova in the Milky Way or its satellites will represent a once-in-a-generation opportunity to obtain detailed information about the explosion of a star and provide significant scientific insight for a variety of fields because of the extreme conditions found within. Supernovae in our galaxy are not only rare on a human timescale but also happen at unscheduled times, so it is crucial to be ready and use all available instruments to capture all possible information from the event. The first indication of a potential stellar explosion will be the arrival of a bright burst of neutrinos. Its observation by multiple detectors worldwide can provide an early warning for the subsequent electromagnetic fireworks, as well as signal to other detectors with significant backgrounds so they can store their recent data. The supernova early warning system (SNEWS) has been operating as a simple coincidence between neutrino experiments in automated mode since 2005. In the current era of multi-messenger astronomy there are new opportunities for SNEWS to optimize sensitivity to science from the next galactic supernova beyond the simple early alert. This document is the product of a workshop in June 2019 towards design of SNEWS 2.0, an upgraded SNEWS with enhanced capabilities exploiting the unique advantages of prompt neutrino detection to maximize the science gained from such a valuable event
    corecore