104 research outputs found

    Ethical Guidelines for Social Work Supervisors in Rural Settings

    Get PDF
    Little research literature exists integrating ethics, supervision, and rural/small community practice. This paper reports results of a study conducted by a joint student-faculty team. The study engaged supervisors in rural and small communities in two Midwestern states in semi-structured interviews. Interview data were then used to develop guidelines for BSW students about what constitutes ethical supervisory practice in rural environments

    Value of Mendelian Laws of Segregation in Families: Data Quality Control, Imputation, and Beyond

    Get PDF
    When analyzing family data, we dream of perfectly informative data, even whole-genome sequences (WGSs) for all family members. Reality intervenes, and we find that next-generation sequencing (NGS) data have errors and are often too expensive or impossible to collect on everyone. The Genetic Analysis Workshop 18 working groups on quality control and dropping WGSs through families using a genome-wide association framework focused on finding, correcting, and using errors within the available sequence and family data, developing methods to infer and analyze missing sequence data among relatives, and testing for linkage and association with simulated blood pressure. We found that single-nucleotide polymorphisms, NGS data, and imputed data are generally concordant but that errors are particularly likely at rare variants, for homozygous genotypes, within regions with repeated sequences or structural variants, and within sequence data imputed from unrelated individuals. Admixture complicated identification of cryptic relatedness, but information from Mendelian transmission improved error detection and provided an estimate of the de novo mutation rate. Computationally, fast rule-based imputation was accurate but could not cover as many loci or subjects as more computationally demanding probability-based methods. Incorporating population-level data into pedigree-based imputation methods improved results. Observed data outperformed imputed data in association testing, but imputed data were also useful. We discuss the strengths and weaknesses of existing methods and suggest possible future directions, such as improving communication between data collectors and data analysts, establishing thresholds for and improving imputation quality, and incorporating error into imputation and analytical models

    Identity-by-descent estimation with population- and pedigree-based imputation in admixed family data

    Get PDF
    Background: In the past few years, imputation approaches have been mainly used in population-based designs of genome-wide association studies, although both family- and population-based imputation methods have been proposed. With the recent surge of family-based designs, family-based imputation has become more important. Imputation methods for both designs are based on identity-by-descent (IBD) information. Apart from imputation, the use of IBD information is also common for several types of genetic analysis, including pedigree-based linkage analysis. Methods: We compared the performance of several family- and population-based imputation methods in large pedigrees provided by Genetic Analysis Workshop 19 (GAW19). We also evaluated the performance of a new IBD mapping approach that we propose, which combines IBD information from known pedigrees with information from unrelated individuals. Results: Different combinations of the imputation methods have varied imputation accuracies. Moreover, we showed gains from the use of both known pedigrees and unrelated individuals with our IBD mapping approach over the use of known pedigrees only. Conclusions: Our results represent accuracies of different combinations of imputation methods that may be useful for data sets similar to the GAW19 pedigree data. Our IBD mapping approach, which uses both known pedigree and unrelated individuals, performed better than classical linkage analysis

    Identity-by-descent estimation with population- and pedigree-based imputation in admixed family data

    Get PDF
    BACKGROUND: In the past few years, imputation approaches have been mainly used in population-based designs of genome-wide association studies, although both family- and population-based imputation methods have been proposed. With the recent surge of family-based designs, family-based imputation has become more important. Imputation methods for both designs are based on identity-by-descent (IBD) information. Apart from imputation, the use of IBD information is also common for several types of genetic analysis, including pedigree-based linkage analysis. METHODS: We compared the performance of several family- and population-based imputation methods in large pedigrees provided by Genetic Analysis Workshop 19 (GAW19). We also evaluated the performance of a new IBD mapping approach that we propose, which combines IBD information from known pedigrees with information from unrelated individuals. RESULTS: Different combinations of the imputation methods have varied imputation accuracies. Moreover, we showed gains from the use of both known pedigrees and unrelated individuals with our IBD mapping approach over the use of known pedigrees only. CONCLUSIONS: Our results represent accuracies of different combinations of imputation methods that may be useful for data sets similar to the GAW19 pedigree data. Our IBD mapping approach, which uses both known pedigree and unrelated individuals, performed better than classical linkage analysis

    Estimating relationships between phenotypes and subjects drawn from admixed families.

    Get PDF
    Background: Estimating relationships among subjects in a sample, within family structures or caused by population substructure, is complicated in admixed populations. Inaccurate allele frequencies can bias both kinship estimates and tests for association between subjects and a phenotype. We analyzed the simulated and real family data from Genetic Analysis Workshop 19, and were aware of the simulation model. Results: We found that kinship estimation is more accurate when marker data include common variants whose frequencies are less variable across populations. Estimates of heritability and association vary with age for longitudinally measured traits. Accounting for local ancestry identified different true associations than those identified by a traditional approach. Principal components aid kinship estimation and tests for association, but their utility is influenced by the frequency of the markers used to generate them. Conclusions: Admixed families can provide a powerful resource for detecting disease loci, as well as analytical challenges. Allele frequencies, although difficult to adequately estimate in admixed populations, have a strong impact on the estimation of kinship, ancestry, and association with phenotypes. Approaches that acknowledge population structure in admixed families outperform those which ignore it

    Post-traumatic stress disorder following childbirth: an update of current issues and recommendations for future research

    Get PDF
    Objective: This paper aimed to report the current status of research in the field of post-traumatic stress disorder following childbirth (PTSD FC), and to update the findings of an earlier 2008 paper. Background: A group of international researchers, clinicians and service users met in 2006 to establish the state of clinical and academic knowledge relating to PTSD FC. A paper identified four key areas of research knowledge at that time. Methods: Fourteen clinicians and researchers met in Oxford, UK to update the previously published paper relating to PTSD FC. The first part of the meeting focused on updating the four key areas identified previously, and the second part on discussing new and emerging areas of research within the field. Results: A number of advances have been made in research within the area of PTSD FC. Prevalence is well established within mothers, several intervention studies have been published, and there is growing interest in new areas: staff and pathways; prevention and early intervention; impact on families and children; special populations; and post-traumatic growth. Conclusion: Despite progress, significant gaps remain within the PTSD FC knowledge base. Further research continues to be needed across all areas identified in 2006, and five areas were identified which can be seen as ‘new and emerging’. All of these new areas require further extensive research. Relatively little is still known about PTSD FC

    Key Variants via the Alzheimer\u27s Disease Sequencing Project Whole Genome Sequence Data

    Get PDF
    INTRODUCTION: Genome-wide association studies (GWAS) have identified loci associated with Alzheimer\u27s disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations, may identify causal variants within GWAS loci. METHODS: We performed single common variant association analysis and rare variant aggregate analyses in the pooled population (N cases = 2184, N controls = 2383) and targeted analyses in subpopulations using WGS data from the Alzheimer\u27s Disease Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of 83 previously identified GWAS lead variants. RESULTS: Seventeen variants were significantly associated with AD within five genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate analyses. DISCUSSION: This study demonstrates the utility of leveraging WGS to gain insights into AD loci identified via GWAS

    Admixture mapping implicates 13q33.3 as ancestry-of-origin locus for Alzheimer disease in Hispanic and Latino populations

    Get PDF
    Alzheimer disease (AD) is the most common form of senile dementia, with high incidence late in life in many populations including Caribbean Hispanic (CH) populations. Such admixed populations, descended from more than one ancestral population, can present challenges for genetic studies, including limited sample sizes and unique analytical constraints. Therefore, CH populations and other admixed populations have not been well represented in studies of AD, and much of the genetic variation contributing to AD risk in these populations remains unknown. Here, we conduct genome-wide analysis of AD in multiplex CH families from the Alzheimer Disease Sequencing Project (ADSP). We developed, validated, and applied an implementation of a logistic mixed model for admixture mapping with binary traits that leverages genetic ancestry to identify ancestry-of-origin loci contributing to AD. We identified three loci on chromosome 13q33.3 associated with reduced risk of AD, where associations were driven by Native American (NAM) ancestry. This AD admixture mapping signal spans the FAM155A, ABHD13, TNFSF13B, LIG4, and MYO16 genes and was supported by evidence for association in an independent sample from the Alzheimer's Genetics in Argentina—Alzheimer Argentina consortium (AGA-ALZAR) study with considerable NAM ancestry. We also provide evidence of NAM haplotypes and key variants within 13q33.3 that segregate with AD in the ADSP whole-genome sequencing data. Interestingly, the widely used genome-wide association study approach failed to identify associations in this region. Our findings underscore the potential of leveraging genetic ancestry diversity in recently admixed populations to improve genetic mapping, in this case for AD-relevant loci.Fil: Horimoto, Andrea R.V.R.. University of Washington; Estados UnidosFil: Boyken, Lisa A.. University of Washington; Estados UnidosFil: Blue, Elizabeth E.. University of Washington; Estados Unidos. Brotman Baty Institute for Precision Medicine; Estados UnidosFil: Grinde, Kelsey E.. University of Washington; Estados Unidos. Macalester College; Estados UnidosFil: Nafikov, Rafael A.. University of Washington; Estados UnidosFil: Sohi, Harkirat K.. University of Washington; Estados UnidosFil: Nato, Alejandro Q.. University of Washington; Estados Unidos. Marshall University; Estados UnidosFil: Bis, Joshua C.. University of Washington; Estados UnidosFil: Brusco, Luis Ignacio. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Morelli, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Ramirez, Alfredo Jose. University Of Cologne; Alemania. Universitat Bonn; Alemania. German Center for Neurodegenerative Diseases; Alemania. University Of Texas Health Science Center At San Antonio (ut Health San Antonio) ; University Of Texas At San Antonio; . Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; ArgentinaFil: Dalmasso, Maria Carolina. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; Argentina. University Of Cologne; AlemaniaFil: Temple, Seth. University of Washington; Estados UnidosFil: Satizabal, Claudia. University Of Texas Health Science Center At San Antonio (ut Health San Antonio) ; University Of Texas At San Antonio; . University of Texas at San Antonio; Estados UnidosFil: Browning, Sharon R.. University of Washington; Estados UnidosFil: Seshadri, Sudha. University Of Texas Health Science Center At San Antonio (ut Health San Antonio) ; University Of Texas At San Antonio; . University of Texas at San Antonio; Estados UnidosFil: Wijsman, Ellen M.. University of Washington; Estados UnidosFil: Thornton, Timothy A.. University of Washington; Estados Unido

    Centers For Mendelian Genomics: a Decade of Facilitating Gene Discovery

    Get PDF
    PURPOSE: Mendelian disease genomic research has undergone a massive transformation over the past decade. With increasing availability of exome and genome sequencing, the role of Mendelian research has expanded beyond data collection, sequencing, and analysis to worldwide data sharing and collaboration. METHODS: Over the past 10 years, the National Institutes of Health-supported Centers for Mendelian Genomics (CMGs) have played a major role in this research and clinical evolution. RESULTS: We highlight the cumulative gene discoveries facilitated by the program, biomedical research leveraged by the approach, and the larger impact on the research community. Beyond generating a list of gene-phenotype relationships and participating in widespread data sharing, the CMGs have created resources, tools, and training for the larger community to foster understanding of genes and genome variation. The CMGs have participated in a wide range of data sharing activities, including deposition of all eligible CMG data into the Analysis, Visualization, and Informatics Lab-space (AnVIL), sharing candidate genes through the Matchmaker Exchange and the CMG website, and sharing variants in Genotypes to Mendelian Phenotypes (Geno2MP) and VariantMatcher. CONCLUSION: The work is far from complete; strengthening communication between research and clinical realms, continued development and sharing of knowledge and tools, and improving access to richly characterized data sets are all required to diagnose the remaining molecularly undiagnosed patients

    Dominant-negative variant in SLC1A4 causes an autosomal dominant epilepsy syndrome.

    Get PDF
    SLC1A4 is a trimeric neutral amino acid transporter essential for shuttling L-serine from astrocytes into neurons. Individuals with biallelic variants in SLC1A4 are known to have spastic tetraplegia, thin corpus callosum, and progressive microcephaly (SPATCCM) syndrome, but individuals with heterozygous variants are not thought to have disease. We identify an 8-year-old patient with global developmental delay, spasticity, epilepsy, and microcephaly who has a de novo heterozygous three amino acid duplication in SLC1A4 (L86_M88dup). We demonstrate that L86_M88dup causes a dominant-negative N-glycosylation defect of SLC1A4, which in turn reduces the plasma membrane localization of SLC1A4 and the transport rate of SLC1A4 for L-serine
    corecore