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Abstract

INTRODUCTION:Genome-wide association studies (GWAS) have identified loci asso-

ciated with Alzheimer’s disease (AD) but did not identify specific causal genes or

variantswithin those loci. Analysis ofwhole genomesequence (WGS)data,which inter-

rogates the entire genome and captures rare variations, may identify causal variants

within GWAS loci.

METHODS:We performed single common variant association analysis and rare vari-

ant aggregate analyses in the pooled population (N cases = 2184, N controls = 2383)

and targeted analyses in subpopulations usingWGSdata from theAlzheimer’s Disease

Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of

83 previously identified GWAS lead variants.
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RESULTS: Seventeen variants were significantly associated with AD within five

genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and

SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate

analyses.

DISCUSSION: This study demonstrates the utility of leveraging WGS to gain insights

into AD loci identified via GWAS.

KEYWORDS

Alzheimer’s disease, association analyses, diverse populations, genome-wide association study,
single nucleotide variations, whole genome sequencing

1 BACKGROUND

Alzheimer’s disease (AD), the most common cause of dementia, has

been ranked as the sixth leading cause of death in the United States

and the fifth leading cause of death in older people (≥65 years old).

Although the role of genetic factors in the development of AD has

beenwidely recognized, genome-wide association studies (GWAS) typ-

ically identify regions or loci rather than specific genes and/or variants.

Additionally, the loci identified by GWAS only explain a small portion

of the total heritability of AD (h2AD = [0.58–0.79]).1 Next-generation

sequencing technology applied in diverse populations as part of the

Alzheimer’s Disease Sequencing Project (ADSP) may help to elucidate

the genetic architecture of AD, and thus, aid in the development of

effective strategies to diagnose, prevent, and treat AD.2

A recent large GWAS totaling 111,326 clinically diagnosed/“proxy”

AD cases and 677,663 controls has identified over 70 loci associ-

ated with AD and related dementias.3 However, the characterization

of these loci remains incomplete. Leveraging whole genome sequence

(WGS) data that encompass the full spectrum of genetic variation

including commonand rare variantsmight identify importantADgenes

within these GWAS loci and provide a better understanding of the

biological mechanisms involved in the pathophysiology of AD.

Previous studies that used WGS to identify genetic loci associ-

atedwith AD performed genome-wide associationwith limited sample

sizes.4–7 These prior WGS studies include a family-based study con-

ducted in 2247 subjects from the National Institute of Mental Health

(NIMH)/National Institute on Aging (NIA) with replication in 1669

independent participants from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI)/ADSP.4 More recently, the same team investigated

the association of groups of rare variants in the same datasets using a

sliding-window approach.5 Additional studies conducted in Asian pop-

ulations highlighted the importance of increasing the representation of

understudied population groups and the potential of WGS to uncover

population-specific genetic loci.6,7 We posit that untilWGS is available

in much larger samples, this data type is better suited for interrogation

of previously identified loci rather than identification of novel loci.

In this work, we performed a deep interrogation of known AD

GWAS loci using the ADSP WGS data. We focused the scope of the

current study by only considering the AD GWAS loci identified in the

GWASwith the largest number of AD cases to date.3 TheADSP aims to

identify protective or risk genetic contributors for AD in populations

with diverse ancestry. The ADSP has generated single nucleotide vari-

ant and insertion/deletion (indel) calls based on WGS data from 4789

participants, which are publicly available (R1 data release https://dss.

niagads.org/datasets/ng00067-v1/). The goal of the current study is

not the replication of prior GWAS findings as we are underpowered to

do so. In addition, it is important to note that the ADSP sample in the

current analyses is not independent of the sample used in Bellenguez

et al.3 Although independent samples are critical for replication, the

goal of the current study is to provide a more comprehensive look at

GWAS loci using more detailed data via WGS. Hence, it is appropri-

ate to utilize a dataset that includes overlapping samples but novel

genomic data.

We conducted single variant association analyses and rare variant

aggregation association tests using the R1WGS data of ADSP to iden-

tify specific genetic variants, genes, and non-coding regions associated

with AD within previously identified AD loci. We also examined multi-

ancestry evidence for AD associations through population-specific

analyses in White/European-ancestry (EA), Black/African-American

(AA), andHispanic/Latino (HI) subgroups, and amulti-populationmeta-

analysis. The insights gained from our analysis will contribute to a

better understanding of AD pathogenesis and potentially identify new

targets for AD drugs and treatment.

2 METHODS

2.1 Study participants

Data from the ADSP are available to qualified investigators via theNIA

Genetics of Alzheimer’s DiseaseData Storage Site (NIAGADS) (https://

dss.niagads.org/). This study was done under an approved NIAGADS

research use statement and local Institutional Review Board approval.

The current analyses focused on participants with WGS data in the

NIAGADS file set named “R1 5K WGS Project Level VCF.” WGS data

have been generated inmultiple cohorts as part of theADSP. TheADSP

data included in this study are comprised of distinct phases includ-

ing theDiscovery, Discovery Extension, andAugmentation phases. The

https://dss.niagads.org/datasets/ng00067-v1/
https://dss.niagads.org/datasets/ng00067-v1/
https://dss.niagads.org/
https://dss.niagads.org/
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Discovery phaseWGSwas generated from individuals of multiplex AD

families as previously described.8–10 The Discovery Extension phase

consisted of a family component and a case-control component. The

Discovery Extension family component WGS was generated on addi-

tional members of selected families from the Discovery phase as well

as members of 77 additional families. A set of 114 Hispanic control

individuals was also sequencedwith the family component.

A focus of the Discovery Extension case-control component was

to increase the diversity of the ADSP samples. The ADSP Discovery

Extension WGS was generated on 3082 individuals, with approxi-

mately one-third each from EA, AA, and HI populations. In the ADSP

Discovery andDiscovery Extension phases, sequencingwas performed

at three sequencing centers via theNationalHumanGenomeResearch

Institute (NHGRI). Sequence data for ADSP Augmentation Studies

were supported by NIA and private funding and are shared with the

research community via NIAGADS. The ADSP data coordinating cen-

ter, the Genomic Center for AD (GCAD), produced a jointly called

and quality controlled (QC’ed) dataset for WGS10 that included the

ADSP WGS Discovery, Discovery Extension, and from the Augmenta-

tion phase, the ADNI study. Details of studies included in the ADSP can

be found at NIAGADS under the following dataset: NG00067 ADSP

Umbrella Study (https://dss.niagads.org/datasets/ng00067/).

2.2 WGS quality control

Low-quality variants were filtered out based on the GCAD-provided

flags, which were generated separately for the Family, Case-Control,

and ADNI sub-studies.10 In addition, GCAD provided the ABHet ratio

computed as (the total reference reads over all heterozygous geno-

types)/(total alternative and reference reads over all heterozygous

genotypes). A variant was excluded if it failed the GATK Variant Qual-

ity Score Recalibration (VQSR) filter, if all genotypes were missing, if it

was monomorphic, or if it had a low call rate across all studies. Addi-

tional filteringwas implementedwithin each sub-study. If a variant had

high read depth (>500 reads) within a sub-study or had ABHet < 0.25

or ABHet > 0.75 within a sub-study, all the genotypes within that sub-

study were set to missing. After these filters were applied, a final call

rate filter of 95% across all sub-studies was implemented.

2.3 AD phenotype definition

The ADSP provides different AD status variable definitions for par-

ticipants included via case-control versus family-based studies. AD

case status in the current analyses was clinician-determined. The cri-

teria varied by study and may have been based on cognitive testing,

neuropathological examination, or physician diagnosis. In the current

analysis, for individuals in the ADSP case-control study, we defined AD

cases as individuals with either prevalent or incident AD. Case-control

individuals with no prevalent or incident AD were defined as controls

and those with missing status were defined as unknown. In the ADSP

RESEARCH INCONTEXT

1. Systematic review: Examination of peer-reviewed

(PubMed) and preprint literature found limited studies

of whole genome sequencing (WGS) data in relation

to Alzheimer’s disease (AD). The Alzheimer’s Disease

Sequencing ProjectWGS release of three datasets nearly

doubles priorWGS sample sizes used in primary analyses

related to AD. We performed association analyses using

WGS to comprehensively interrogate variation, including

rare variants, within previously identified loci from a

recent genome-wide association study (GWAS).

2. Interpretation: We identified 17 genetic variants signifi-

cantly associated with ADwithin five ADGWAS genomic

regions implicating the genes OARD1/NFYA/TREML1,

JAZF1, FERMT2, SLC24A4, and KAT8.

3. Future directions: Our study highlights the value of

WGS data to implicate relevant variants within GWAS-

associated AD loci and highlights the contribution of rare

variants inADrisk. Futurework includes association anal-

yses in larger WGS datasets and biological studies to

further characterize implicated variants.

family phenotype file, possible values for theADstatus variable include

no dementia, definite AD, probable AD, possible AD, family-reported

AD, other dementia, family reported no dementia, and unknown. For

family-based individuals, we defined an AD case as either possible,

probable, or definiteAD.ADcontrolsweredefinedas individuals coded

as having no dementia. We redefined individuals with family-reported

AD, other dementia, or unknownstatus asmissingADstatus. TheADNI

phenotype data, which is part of the ADSP Augmentation study, pro-

vides information on mild cognitive impairment (MCI) in addition to

AD status. Individuals with a current diagnosis of MCI (N = 320) were

included asADcontrols in the current study. After selecting genetically

unique individuals with AD status available, a total of 4567 partici-

pants (2383 controls and 2184 cases) with WGS were included in the

analyses.

2.4 Analysis overview

Figure 1 provides an overview of our analysis workflow. Single vari-

ant association analysis was performed on common variants in both

the pooled sample and population-specific samples. Two types of rare

variant aggregate association analyses were performed in the pooled

sample: gene-based testing and non-coding rare variant testing. To

meet the goal of interrogating previously identifiedGWAS loci, we only

consideredanalysis results for variantswithin100kbof the leadGWAS

variants fromBellenguez et al.3 Analysis details are provided below.

https://dss.niagads.org/datasets/ng00067/
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F IGURE 1 Schematic of the ADSP 5K analysis. ADNI, Alzheimer’s Disease Neuroimaging Initiative; ADSP, Alzheimer’s Disease Sequencing
Project; GWAS, genome-wide association studies;WGS, whole genome sequence.

2.5 Pooled sample single-variant association
analysis

Single-variant association analysis of AD was performed on variants

within GWAS loci for participants with both phenotype and genotype

data available using GENESIS.11 Principal component analysis (PCA)

wasperformedasdescribed in the supplementalmethods to assess and

adjust for thegenetic ancestryof the studyparticipants (FigureS1). The

WGS samples included in the ADSP R1WGS dataset were sequenced

across four sequencing centers (Baylor College of Medicine Human

Genome Sequencing Center, The Broad Institute, McDonnell Genome

Institute at Washington University School of Medicine, and Illumina)

and two sequencing platforms (Illumina HiSeq 2000/2500, and Illu-

mina HiSeq X Ten). To control for the effects of study design and tech-

nical differences,we generated indicator variables (study× sequencing

center × sequencing platform) with 10 categories based on Table 1.

We considered these indicator variables as technical covariates and

defined case-control × Broad × HiSeq X Ten, which had the largest

number of observations, as the reference group. We used a general-

ized logistic mixed-effects model to account for relatedness through

a genetic relationship matrix (GRM). The GRM was estimated based

on the same variants used in the PCA. We included sex, the techni-

cal covariates, and PC2 (based on a Bonferroni corrected significant

p < 0.0016 for testing 32 PCs) as covariates in the null model. We per-

formed the analysis across autosomes and kept variants satisfying the

following criteria: a call rate higher than 95%, and a minor allele count

(MAC) higher than 20.

To determine if the significant variants identified were distinct from

the lead GWAS variants,3 we computed linkage disequilibrium (LD; r2)

between the significant variants and the lead GWAS variants within

each population based on the ADSP genetic data.

2.6 Population-specific association analysis

Weconductedpopulation-specific analyses (nullmodel andassociation

analyses) for AD using GENESIS, accounting for genetic relatedness

using a GRM. We defined three population groups (EA, AA, and HI).

We selected a total of 2144EAparticipants based onPCAanalysis per-

formed using both theADSP and theHumanGenomeDiversity Project

(HGDP). Only participants who were not outliers based on six stan-

dard deviations (SD) from the mean for PCs 1 through 4 calculated in

the European HGDP groups (Adygei, Basque, French, BergamoItalian,

Orcadian, Russian, Sardinian, and Tuscan) were retained. We selected

a total of 1028 AA and 1548 HI participants based on reported

race and ethnicity. A total of 38 participants who identified as both

African-American andHispanicwereplaced in theHispanic population.

We included in the null model, in each population group, covariates
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TABLE 1 Characteristics of the participants included in the ADSP R1 dataset.

All (N= 4567) AA (N= 995) HI (N= 1516) EA (N= 2043) Other (N= 13)

Age (SD) 76.9 (8.3) 79.2 (7.6) 75.1 (8.5) 77.1 (8.4) 77.3 (6.6)

Alzheimer’s disease (%)

Case 2184 (47.8%) 463 (46.5%) 795 (52.4%) 921 (45.1%) 5 (46.2%)

Control 2383 (52.2%) 532 (53.5%) 721(47.6%) 1122 (54.9%) 8 (53.8%)

Sex (%)

Female 2822 (61.8%) 710 (71.4%) 1020 (67.3%) 1086 (53.2%) 6 (38.5%)

Male 1745 (38.2%) 285 (28.6%) 496 (32.7%) 957 (46.8%) 7 (61.5%)

Study (%)

ADNI 797 (17.5%) 26 (2.6%) 10 (0.7%) 750 (36.7%) 11 (84.6%)

ADSP- case-control 2963 (64.9%) 944 (94.9%) 1107 (73.0%) 911 (44.6%) 1 (7.7%)

ADSP- family 807 (17.7%) 25 (2.5%) 399 (26.3%) 382 (18.7%) 1 (7.7%)

Sequencing center (%)

Baylor 1241 (27.2%) 0 (0) 1103 (72.8%) 138 (6.8%) 0 (0)

Broad 1263 (27.7%) 2 (0.2%) 286 (18.9%) 974 (47.7%) 1 (7.7%)

Illumina 797 (17.5%) 26 (2.6%) 10 (0.7%) 750 (36.7%) 11 (84.6%)

WashU 1266 (27.7%) 967 (97.2%) 117 (7.7%) 181 (8.9%) 1 (7.7%)

Platform (%)

HiSeq X Ten 3227 (70.7%) 965 (97.0%) 1186 (78.2%) 1074 (52.6%) 2 (15.4%)

HiSeq2000/2500 1340 (29.3%) 30 (3.0%) 330 (21.8%) 969 (47.4%) 11 (84.6%)

Note: Populations defined are described in theMethods section.

Abbreviations: AA, Black/African-American; ADNI, Alzheimer’s Disease Neuroimaging Initiative; ADSP, Alzheimer’s Disease Sequencing Project; EA,

White/European ancestry; HI, Hispanic/Latino.

associated with AD status at p ≤ 0.05. The EA null model included sex,

ADSP family study status, Illumina sequencing center,HiSeqXTenplat-

form,PC2,PC9, andPC15. TheHInullmodel included sex, all sequenc-

ing centers, HiSeq X Ten platform, PC 13, PC 16, and PC 17. The AA

null model included sex, Illumina sequencing center, and PC 1.We per-

formed association analyses, in each population group, and retained

the results with a call rate higher than 95% and a MAC higher than

20. In addition, we performed a multi-population meta-analysis using

three different models (fixed-effect, random-effect, and Han & Eskin’s

modified random-effect) implemented inMetasoft12 by combining the

population-specific results satisfying the criteria of awithin-population

MAC higher than 10.We then kept the meta-analysis results passing a

total MAC across population groups higher than 20.

2.7 Gene-based tests

We tested the association of aggregate groups of low frequency (minor

allele frequency [MAF] < 5%) or rare (MAF < 1%) genetic variants

with AD status. Annotation for all called variants was generated using

Ensembl VEP91 by the ADSP annotation working group. We selected

missense or loss of function (lof) genetic variants based on the most

severe variant consequence according to the ADSP AnnotationWork-

ing Group Ranking Process and listed in the annotation file (frameshift

variant, inframe deletion, inframe insertion, missense variant, protein-

altering variant, splice acceptor variant, splice donor variant, start

lost, stop gained, and stop lost). We conducted the Sequence Kernel

Association Test (SKAT, mmskat) and burden tests (combined multi-

variate and collapsing [CMC], emmaxCMC) with EPACTS (Efficient

and Parallelizable Association Container Toolbox) using mixed-effect

models adjusted for sex, technical covariates, and PCs significantly

associatedwithADstatus (PC2)while accounting for relatedness using

a GRM.

2.8 Non-coding rare variant analysis

For non-coding rare variant analysis, we used annotations fromWGSA

v0.813 including annotations from ANNOVAR, VEP, SnpEff, COSMIC,

and SPIDEX. We conducted rare variant analysis using the variant-Set

Test for Association using Annotation infoRmation (STAAR) method,14

which was developed to boost the power of rare variant analyses

by effectively incorporating both variant functional categories and

multiple complementary functional annotations while accounting for

relatedness and population structures. We used the same covariates

(sex, technical covariates, and significant PCs) in the model as in the

single-variant analysis. The GRM was incorporated to account for

relatedness among samples.

We aggregated sites that overlap enhancers and promoters around

gene transcription start sites (TSS). The promoters within 5 kb of a

TSS that overlap DNase hypersensitivity sites (DHS) are defined as at

least one WGSA H3K4me3 annotation for brain tissues (E067, E068,
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E069, E070, E071, E072, E073, E074, E081, E082), and the enhancers

within 20 kb of a TSS are defined by EnhancerFinder in Brain. We

incorporated annotations from WGSA in the analysis, which include

MAF, functional scores (GERP, GenoCanyon, RegulomeDB, FUNSEQ,

CADD, Fathmm, EIGEN-PC), and the ENCODE score (DNASE). We

then transformed the annotation scores to phred-scaled scores using

−10 × log10(rank[score]/M), where M is the total number of variants

tested in the analysis.

2.9 Focus on GWAS loci

Given the limited power to detect novel loci with the current sample

size, we focused on exploiting WGS to provide insights on previously

reportedADGWAS loci.Weused the variants listed inBellenguez et al.

as the previously reported AD GWAS top variants.3 For single variant

association analyses, we looked up these lead variants in the ADSP

WGSdata.We then assessedADSPWGS associationswithin 100 kb of

each lead GWAS variant. For gene-based and non-coding rare variant

analysis, we obtained the results for genes or regions in the 100 kb

window around each lead variant. We included genes or non-coding

regions for which any portion overlapped with the specified window.

Using this paradigm, we identified 303 genes within 100 kb of the

index single nucleotide polymorphisms (SNPs).

In general, we defined a threshold for statistical significance equal

to 0.05/number of statistical tests and a suggestive threshold as

1/number of statistical tests. Within a 100 kb window, many single

variant tests were highly correlated. Therefore, we computed the

effective number of independent tests using the simpleM approach15

and used the effective number of tests in the denominator when

computing a window-specific threshold for single variant association

testing. Effective numbers of tests were computed across the pooled

sample andwithin each population subgroup (Table S1).

We leveraged publicly available multi-omic resources, from quanti-

tative trait locus (xQTL) analyses applied to RNA sequence and DNA

methylation from thedorsolateral prefrontal cortex of 411older adults

from the Religious Orders Study (ROS) andMemory and Aging Project

(MAP) studies16 to look up the main genetic variants from the pooled

association analysis.

3 RESULTS

3.1 Description of the ADSP data

After the QC check of the ADSP data release NG00067.v2, there were

over 95 million variants across 4733 participants. A total of 4567

individuals (2383 controls, 2184 cases) have available AD status and

contributed to the analyses, amongwhich 807 are from the ADSP fam-

ily study, 2963 are from theADSP case-control study, and 797 are from

ADNI. The participants included in the analyses were more likely to be

women (61.8%) than men. The distribution of study design member-

ship, sequencing centers, and sequencing platforms is summarized in

Table 1.

3.2 Pooled sample single-variant association
analysis

Genome-wide, there were about 20 million variants with a call rate

higher than 95% and a MAC higher than 20 in the pooled sample

analysis. Our model that included GRM and PC adjustments showed

acceptable type-I error control (λ = 1.05, Figure S2). As expected, the

strongest association was observed at the apolipoprotein E (APOE)

locus, where the major APOE variant rs429358 (p = 7.2 × 10−77) was

the top hit.

Among the specific lead GWAS variants from Bellenguez et al.,3

none reached the strict significance threshold (p < 6 × 10−4, Bonfer-

roni correction for the total number of variants tested) in the pooled

sample association analysis. Full results for the 83 lead GWAS variants

are provided in the supplement (Table S2).

Applying the significance thresholds based on the effective num-

ber of tests within 100 kb windows around the lead GWAS variants

(Table S1), we identified 17 significant variants in the single variant

association analysis in the pooled sample (Table 2). Sensitivity analysis

performed removing the MCI individuals (N = 320) showed negligible

change in p-values or effect size estimates (Table S3). These 17 variants

occur in five genomic regions on chromosomes 6, 7, 14, and 16. For-

est plots for the top variant in each of these five regions are presented

in Figure 2. Examination of LD patterns shows near-perfect LD among

the variants identified on chromosome 6, on chromosome 7, and for

the one region on chromosome 14withmultiple variants. Only a single

variant was identified on chromosome 16 and in one region on chro-

mosome 14. Detailed LD information is provided in the supplement

(Figure S3).

LD patterns were examined to assess if these associations rep-

resented the same signal as the lead GWAS variant from Bel-

lenguez et al. or distinct signals. In the SLC24A4 region, rs7155002

(14:92467728:C:T)was in high LD (r2 =0.99)with the leadGWASvari-

ant rs7401792 (14:92472511:G:A) in the EA population. The LD was

moderate in the other populations (r2 = 0.44 and 0.74, for AA and HI,

respectively) at the SLC24A4 region. LD with the lead GWAS variant

was not observed in any other region included in Table 2 (r2 < 0.02)

across all populations considered (Figure S3).

3.3 Population-specific single-variant association
analysis and multi-population meta-analysis

We conducted population-specific association analyses in the three

main subgroups (N = 2043 EA; N = 995 AA, and N = 1516 HI partici-

pants). There was an acceptable type-I error in the population-specific

analyses and the multi-population meta-analysis (Figures S4-S7). We

confirmed the significant association of the APOE locus (rs429358) in

both the population-specific analyses and the multi-population meta-

analysis.However, as found inprevious studies17,18 the associationwas

weaker in the HI population (beta = 1.17 in EA, 1.02 in AA, and 0.59

in HI).

Population-specific single-variant analyses identified 23 significant

variants in 11 loci within 100 kb of the lead GWAS variants (Table 3).
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TABLE 2 Significant variants from single-variant association analysis in the pooled ADSP sample within 100 kb of the 83 lead GWAS variants.

Pooled single variant

association analysis

Chr:Pos:A2:A1a rsid Gene Location GWAS variantsb GWAS locib MAF p-value Beta

6:41067923:C:T rs115774857 OARD1 (close

gene

APOBEC2)

intronic rs143332484,

rs75932628,

rs10947943

TREM2,

UNC5CL

0.0080 1.0E-04 1.016

6:41077355:A:G rs145520578 OARD1, NFYA intronic 0.0080 9.9E-05 1.018

6:41077511:A:C rs115202236 intronic 0.0081 9.9E-05 1.018

6:41082030:G:A rs12200736 intronic rs143332484,

rs75932628,

rs60755019,

rs10947943

TREM2,

TREML2,

UNC5CL

0.0080 1.0E-04 1.018

6:41083056:C:T rs10947945 intronic 0.0080 1.0E-04 1.018

6:41088533:T:C rs12210716 intronic 0.0080 1.0E-04 1.018

6:41147490:T:G rs12199328 intergenic (close

gene TREML1)

0.0080 1.0E-04 1.018

6:41173956:G:Ac rs10947950c intergenic intergenic rs143332484,

rs75932628,

rs60755019

TREM2,

TREML2

0.0128 1.4E-04 0.783

7:28034934:T:A rs73683942 JAZF1 intronic rs1160871 JAZF1 0.0188 7.5E-05 −0.627

7:28034935:C:G rs78789160 intronic 0.0188 7.5E-05 −0.627

7:28035459:GAGAT:G no rsids intronic 0.0188 1.9E-05 −0.677

7:28037452:A:C rs73683943 intronic 0.0191 3.8E-05 −0.644

7:28042506:C:G rs60825597 intronic 0.0196 7.8E-05 −0.607

14:52885670:T:TA rs1310103853 FERMT2 intronic rs17125924 FERMT2 0.0174 4.5E-06 0.806

14:52932032:A:G rs60609189 intronic 0.0189 7.4E-06 0.768

14:52992239:A:G rs12431954 intergenic 0.0205 3.8E-06 0.763

14:92467728:C:T rs7155002 SLC24A4 intronic rs12590654,

rs7401792

SLC24A4 0.4460 1.4E-05 −0.198

16:31117787:C:G rs201871085 KAT8 (close gene

BCKDK)

missense variant,

non-coding

transcript exon

variant

rs889555 BCKDK 0.0108 2.4E-05 0.926

Abbreviations: ADSP, Alzheimer’s Disease Sequencing Project; GWAS, genome-wide association studies; MAF, minor allele frequency.
aA1 corresponds to the alternate (effect) allele; the positions provided are on build 38.
bThe GWAS variants and GWAS loci are based on the GWAS list fromBellenguez et al. (PMID: 35379992).
cVariant identified as significant in themulti-populationmeta-analysis (not in the pooled analysis).

Of these, 15 variants (eight loci) were identified in the EA population

and eight variants (three loci) in the AA population. No significant vari-

antswere identified in theHI population. Theonly overlap in significant

variants between thepooled sample and thepopulation-specific single-

variant analyseswas amissense variant inKAT8, whichwas very rare in

the AA andHI subsamples (Table S4).

3.4 Gene-based tests

QQ plots for the SKAT and burden tests are provided in Figure S8.

Using themultiple-testing correction threshold for303genes (p<1.7×

10−4),KAT8 (p= 2.2× 10−5,MAF< 5%) lyingwithin 100 kb of a GWAS

variant was detected to be significantly associated with AD status by

SKAT, and itwas also shownas a suggestive association (p<3.4×10−3)

using CMC (p = 9.2 × 10−4). Within 100 kb of GWAS variants, SKAT

detected suggestive associations in LAIR1 (p= 0.0023, MAF< 5%) and

ATF5 (p = 5.7 × 10−4, MAF < 5%), and CMC identified TREM2 (p = 3.3

× 10−3 forMAF< 1% and 8.9× 10−4 forMAF< 5%).

3.5 Non-coding rare variant analysis

QQplots showed deflated type-I error (λ= 0.75), most likely due to the

small sample size, in the STAAR rare-variant analysis (Figure S9). No

regions were identified as significant using the STAAR approach. The

top STAAR results overlapping GWAS loci are shown in Table S2.

3.6 xQTL analysis lookup

We did not identify significant mQTL or eQTL associations for the

main genetic variants identified in the pooled analysis. We could not

look up some of the less frequent variants on chromosomes 7, 14,

and 16 in the QTL results as these analyses were restricted to com-

mon variants. Suggestive associations have been reported between
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F IGURE 2 Top variants identified from single-variant association analysis in the pooled ADSP sample within 100 kb of the 83 lead
genome-wide association studies (GWAS) variants. Variant ID is in the form of chromosome:position (effect allele). The positions provided are on
build 38. EAF is the effect allele frequency, Meta-RE is themulti-populationmeta-analysis using a random effect model, Meta-FE is the
multi-populationmeta-analysis using a fixed effect model. The p-value forMeta-RE is calculated using Han and Eskin’s modified random effects
model. The effect size and its 95%CI are not shown for variants with aminor allele count (MAC)< 10 in population-specific analysis. AA,
Black/African-American; EA,White/European ancestry; HI, Hispanic/Latino.

rs10947950 (chromosome 6) and cg25473438 (beta = 0.24, p = 1.4

× 10−8) and between rs7155002 (chromosome 14) and cg12072028

(beta= 0.19, p= 5.8× 10−6), Table S5. TheCpG cg12072028 is located

in the intron 1 of RIN3 and modest associations have been described

between rs7155002 and RIN3 expression in the brain (beta = 0.04,

p= 0.01), Table S5.

4 DISCUSSION

GWAS have been essential in identifying genetic loci associated with

AD. However, GWAS loci typically contain scores of genes and thou-

sands of variants. Additional studies are needed to pinpoint specific

genes or variants as the ones influencing the risk for AD.WGSprovides

complete genomic sequences andhenceenumerates both commonand

rare variants. WGS therefore has the potential to provide information

beyond commonvariants that are the cornerstoneofGWAS. In the cur-

rent study,we have examinedWGS from theADSPR1dataset focusing

on previously implicated regions to better understand important vari-

ants within AD GWAS loci in a diverse study sample. We identified 17

significant variants in five genomic regionsusing single-variant associa-

tion analysis in the pooled sample. The majority of these variants were

intronic, although two intergenic and one missense variant were also

identified.

Bellenguez et al.3 identified multiple lead GWAS variants on chro-

mosome 6, which yielded overlapping 100 kb windows defined by our

approach. We identified seven significant variants on chromosome 6

that are in nearly complete LD. Six of these variants are located within

intronic regions of theOARD1 and NFYA genes, and one variant is very

close to APOBEC2. One variant was intergenic with the closest gene

being TREML1. This region contains TREM2, for which several rare

coding variants have been implicated as conferring risk for AD.19–22

TREM2 showed suggestive evidence of association in gene-based

analyses indicating multiple variants in this region are likely to play an

important role in AD. The missense variant rs75932628 was one of

the lead GWAS variants from Bellenguez et al. and has been identified

as a functional variant for AD.22–24 The variant rs75932628 has an

MAF = 0.0035 in the ADSP pooled sample and p = 0.003 for single-

variant association with AD. This suggestive association is driven by

the EA population (MAF = 0.007) as this variant is less frequently

observed in the AA (MAF = 0.001) or HI (MAF = 0.0003) populations.

Examination of LD suggests that the variants we identified implicating

OARD1/NFYA/TREML1 have an effect distinct from rs75932628.

OARD1 encodes a deacylase with a function to catalyzeO-acetyl-ADP-

ribose during multiple cellular processes. A homozygous mutation

could lead to cell death and cause a form of childhood neurodegenera-

tive disorder.25 NFYA encodes a subunit of nuclear transcription factor

Y, which is a ubiquitous transcription factor. The gene is involved in

post-transcriptional regulation with tissue-specific preference, and it

is suppressed in the brain of model mice with Huntington’s disease26

and spinal and bulbar muscular atrophy.27 TREML1 encodes a protein

belonging to the family of triggering receptors expressed on myeloid

cells-like (TREM). A deficiency of TREML1 might result in hemorrhage

due to localized inflammatory lesions.28
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The five significant variants on chromosome 7 are in a strong

LD block and all variants are intronic for JAZF1, which encodes a

transcriptional repressor. The gene has been linked with diabetes

mellitus and cancer, but also has a role in lipid metabolism sup-

porting the connection between lipid levels and AD.29 The JAZF1

GWAS variant (rs1160871) is a strong eQTL in microglia and is con-

sidered a Tier 1 (highly plausible) AD gene.3 The block of variants

identified in the current study is not in LD with the lead GWAS

variant rs1160871 (7:28129126:GTCTT:G) suggesting a distinct effect

on AD.

We identified two regions on chromosome 14, with significant vari-

ants intronic to FERMT2 and SLC24A4. The intronic variant rs7155002

for SLC24A4 was in strong LD with the lead GWAS variant in the

EA population, indicating a likely shared effect. Lookup in brain xQTL

data shed light on potential biological regulatory mechanisms in RIN3

that have also been implicated in AD.30,31 FERMT2 encodes plekstrin

homology domain-containing family C member 1 and is known to

be involved in amyloid-β precursor protein (APP) metabolism.32 The

under-expression of FERMT2 was associated with mature APP level

increment in the cell surface.32 Previous studies reported that FERMT2

is also involved in cardiac and skeletal muscle development33 and

cancer progression.34,35 SLC24A4 encodes amember of the potassium-

dependent sodium/calcium exchanger protein family and is associated

with neural development.36 A homozygous mutation in SLC24A4 may

cause amelogenesis imperfecta,37,38 but the function of SLC24A4 in AD

is not clearly understood.

A raremissense variant (rs201871085,MAF= 0.0108 in the pooled

sample) within KAT8 (lysine acetyltransferase 8) on chromosome 16

was significantly associated with AD. KAT8 was also significant in the

low-frequency variant gene-based analyses. KAT8 encodes a member

of the MYST histone acetylase protein family that has a characteristic

MYST domain containing an acetyl-CoA-binding site, a chromodomain

typical of proteins that bind histones, and a C2HC-type zinc finger.

This gene has been recently identified by two large-scale GWAS of

clinically diagnosed AD and family history of AD39,40 and by a novel

knockoff method when applied to the ADSP data.41 Aberrant expres-

sionpatternsofKAT8mightbeassociatedwithADprogression.42 KAT8

appears to be a promising candidate gene that is involved in cerebral

development43 and may play a role in neurodegeneration in both AD

and Parkinson’s disease.44,45 We were not able to look up the variant

rs201871085 in the brain xQTL data. This variant might not have been

analyzed due to a low frequency or a low quality of imputation, thus

highlighting the importance of leveragingWGS data.

The ADSP represents a diverse population sample, although in this

early release of ADSP WGS data, the sample size within a specific

population is limited (NEA = 2043,NAA =995,NHI = 1516). Population-

specific analyses provide information about patterns of allele fre-

quency for AD-associated variants among populations. Among the five

loci identified as significant in the pooled single-variant association

analysis, two regions (chromosomes 6 and 16) displayed EA-specific

associations and corresponded to low-frequency variants in EA that

were rare in other population groups. One signal (chromosome 7) was

driven by a variant common in AA with a low frequency in HI, and rare

in EA. Finally, two regions (chromosome 14) were driven by HI signals

withonevariant common inall populationgroups, andonevariant com-

mon in HI but rare in EA and AA. All these results are summarized in

Table S4.

The signals identified only in AA in the population-specific analyses

(chromosomes 4 and 14) corresponded to SNPs common in AA that

were less common in HI and rare in EA. A few signals identified only

in EA corresponded to variants that were rare in all population groups

(chromosomes8, 17, and20). Two low-frequency signals identifiedonly

in EA (chromosomes 16 and 17) corresponded to SNPs that were rare

in AA and HI. Finally, three signals identified only in EA (chromosomes

5, 14, and 16) corresponded to SNPs that were common in different

population groups. All these results are summarized in Table 3.

A strength of this study is the analysis ofWGSdata jointly called and

QC’ed by a single data coordinating center. The diversity in the genetic

ancestry of the participants included is another strength. Despite this

diversity, a limitation of the study is the moderate sample size, par-

ticularly within each population analyzed. To overcome this limitation,

the main analyses were focused on the pooled sample. However, even

within the pooled sample, we acknowledge that the power of the anal-

yses was limited. For this reason, our goal was not to seek novel loci

in a genome-wide search but to interrogate previously identified loci

with the detailed data provided by WGS. With the limited sample

size, single rare-variant associations that are close to the significance

threshold should be interpreted with some caution. But we note that

in all five genomic regions, there are significant low-frequency (0.01 ≤

MAF < 0.05) or common (MAF ≥ 0.05) variants rather than only rare

(MAF< 0.01) variants.

The ADSP is ongoing with larger WGS datasets being publicly

released and planned. Future analyses with larger sample sizes may

yield additional insights, especially for population-specific effects. The

current study demonstrates the importance of leveraging WGS data

to gain insights into loci identified via GWAS and highlights the

contribution of low-frequency variants to AD risk.
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