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Abstract

Purpose: Mendelian disease genomic research has undergone a massive transformation over the 

past decade. With increasing availability of exome and genome sequencing, the role of Mendelian 

research has expanded beyond data collection, sequencing, and analysis to worldwide data sharing 

and collaboration.

Methods: Over the past 10 years, the National Institutes of Health–supported Centers for 

Mendelian Genomics (CMGs) have played a major role in this research and clinical evolution.

Results: We highlight the cumulative gene discoveries facilitated by the program, biomedical 

research leveraged by the approach, and the larger impact on the research community. Beyond 

generating a list of gene-phenotype relationships and participating in widespread data sharing, the 

CMGs have created resources, tools, and training for the larger community to foster understanding 

Baxter et al. Page 2

Genet Med. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of genes and genome variation. The CMGs have participated in a wide range of data sharing 

activities, including deposition of all eligible CMG data into the Analysis, Visualization, and 

Informatics Lab-space (AnVIL), sharing candidate genes through the Matchmaker Exchange and 

the CMG website, and sharing variants in Genotypes to Mendelian Phenotypes (Geno2MP) and 

VariantMatcher.

Conclusion: The work is far from complete; strengthening communication between research 

and clinical realms, continued development and sharing of knowledge and tools, and improving 

access to richly characterized data sets are all required to diagnose the remaining molecularly 

undiagnosed patients.

Keywords

Centers for Mendelian Genomics (CMG); Data sharing; Mendelian conditions; Novel gene-
disease discovery; Rare disease tools

Introduction

The completion of the first human reference genome in 2001, complemented by the rapid 

development of next-generation sequencing (NGS), brought about a paradigm shift in 

the field of human genetics and Mendelian disease research. Candidate gene sequencing, 

positional cloning, and physical mapping of genes were rapidly replaced when NGS 

technologies enabled routine examination of all annotated human coding regions in the 

assayable genome, ie, the exome, in a single analysis. By 2010, it was clear that NGS 

methods, particularly exome sequencing (ES), offered a robust approach to identify 

candidate novel disease genes and molecular diagnoses.1–5 With these advancements, it 

was now possible to study Mendelian conditions in a rapid and cost-effective manner. 

High-throughput sequencing approaches lent themselves to coordination through national 

programs, allowing for efficient generation of high-quality genomic data analyzed through 

rigorous sustainable pipelines. Effectively finding causes for the rarest of diseases requires 

expanding the reach of genomic research through training more clinicians and researchers in 

genomic analysis and a robust infrastructure that supports data sharing and interdisciplinary 

collaborative research.

With a focus on identifying the causative variants in the genes responsible for all Mendelian 

phenotypes, several national and international efforts were quickly developed and included 

collaborative efforts such as the FORGE Canada Consortium (now referred to as the 

Care4Rare Canada Consortium),6 Deciphering Developmental Disorders in the UK study,7 

Undiagnosed Diseases Network in the United States,8 and the International Rare Diseases 

Research Consortium.9 In 2011, the National Human Genome Research Institute (NHGRI) 

within the United States National Institutes of Health (NIH) established the Centers for 

Mendelian Genomics (CMGs), with additional support from the National Heart, Lung, and 

Blood Institute and, later, the National Eye Institute. The need for common infrastructure, 

workflows, and methods development across all disease areas provided the rationale for a 

centralized CMG structure that could support national and international collaborative efforts 

with clinicians and researchers who might not otherwise have the necessary resources 

or environments to engage in genomic research, thus truly opening the door to the 
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study of all Mendelian conditions. The goal of the CMG program was to accelerate the 

identification of genetic variation underlying Mendelian conditions leveraging genome-wide 

NGS technologies and to disseminate discoveries, approaches, and technology broadly 

to drive discovery worldwide.10 The consortium initially consisted of 3 centers11: Baylor-

Hopkins CMG, University of Washington CMG, and Yale CMG. A fourth center, Broad 

Institute of MIT and Harvard CMG, was added during the second phase12 of the consortium. 

Now in the final year of funding, we highlight our achievements through discoveries, 

data sharing, tools, and impact on the community as well as reflect on the remaining 

challenges and lessons learned from a decade of gene discovery. We have learned much 

from the CMGs, and although the CMG program has come to an end, a new NHGRI-funded 

program, the Genomics Research to Elucidate the Genetics of Rare Diseases Consortium 

(GREGoR), launched in 2021. GREGoR’s mandate is to sequence, identify, and validate 

disease-contributing genes and variants in families for whom current approaches have failed 

to find a molecular diagnosis, essentially developing approaches to solve the unsolved 

Mendelian disease cases and families.

The Importance of Collaboration in Mendelian Gene Discovery

The rarity and diversity of Mendelian diseases require that we cast a broad net across 

the human population to meet our goal of complete enumeration of Mendelian disease 

genes. Accordingly, the 4 CMGs collaborated directly with 2283 researchers during the 

last decade. Through extended collaborations and publications, the CMGs worked with 

11,771 researchers across 2773 institutions in 90 countries. Building this vast collaborative 

network required global outreach efforts, including advertisements in journals, seminars at 

conferences, educational courses, boots on the ground–style recruitment, and word of mouth 

from collaborators. Collaborators brought DNA samples from deeply phenotyped, unsolved 

families affected by rare disease who consented for genomic studies and data sharing; 

CMGs provided sequencing, data processing, and data sharing, and analysis was done in 

collaboration through joint distributive research efforts. Although collaboration styles varied 

based on preferences of individual CMGs and collaborators, often CMGs would perform 

initial genomic analyses to prioritize a short list of high priority candidate variants for each 

proband/family that could be discussed in consultation with the collaborator. Collaborators 

typically pursued the variants of interest to gather additional cases, performed functional 

studies, synthesized the science, and wrote the findings, often with resources and support 

from CMGs.

Most successful discoveries required collaboration that extended beyond a single CMG 

and collaborator. In an analysis of the CMG’s gene discovery publications, we found that 

>90% involved more than 1 institution contributing cases to the publication, highlighting the 

fundamental role of collaboration in solving Mendelian disease. These connections are often 

made via data-sharing platforms and activities, which have become a critical component to 

gene discovery.13

In 10 years, CMGs have contributed to 961 manuscripts by providing sequencing data, 

analysis, methods development, and training in genomic analysis. CMGs have generated 

75,573 exomes, 3876 genomes, 714 transcriptomes through RNA sequencing (RNA-seq), 

Baxter et al. Page 4

Genet Med. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and 385 methylation arrays across 28,991 families (Figure 1). The general strategy was to 

sequence trios or probands that had prior gene panel testing to exclude known genetic causes 

of disease, although as exome prices fell over the course of the program, this became less 

pragmatic, particularly for samples from individuals with limited health care access.

Track record in discovering gene-disease relationships

Remarkably, the rate of CMG discovery has continued on a fairly constant trajectory over 

the decade of the program.11,12 The CMGs have contributed to the identification of 1637 

new disease-gene relationships (172/year) and 2270 candidates (239/year) over the course 

of the program (Table 1). Details of each novel gene-disease relationship are provided in 

Supplemental Table 1. This continued rate of discovery tells us that there are still more 

Mendelian genes to be found and that ongoing sequencing efforts should continue to be 

fruitful.

There are intriguing observations and interesting trends in the success of gene-disease 

discovery efforts across organ systems, although we note the caveat that efforts have 

not been applied evenly. Much effort has focused on neuro-developmental conditions and 

syndromic disorders where there has been a continued high rate of gene-disease discovery 

(Figure 2). For cases where only a single system was impacted, disorders of blood and 

blood-forming tissues, metabolism/homeostasis, the immune system, integument, and the 

nervous system have the highest rates of novel findings. When multiple systems are 

involved, involvement of the skeletal system or connective tissue has the highest rate 

of findings (including known gene-disease relationships, novel gene-disease relationship 

discoveries, and candidates). Skeletal abnormalities or involvement of the immune system 

had the highest novel discovery rate. For ear, eye, kidney, connective tissue, and muscle 

phenotypes, some new genes have been identified, but many cases were solved with variants 

in genes that have known gene-phenotype relationships in OMIM. Solving many of these 

cases required additional data types, including RNA-seq or targeted splicing assays, long-

read sequencing, and methylation analysis.14–17

The CMGs have contributed to the discovery of 778 phenotypic expansions associated with 

previously established disease genes. Such discoveries represent an important contribution 

to both the research and clinical fields because the full phenotypic spectrum of a Mendelian 

disease, or the set of phenotypes associated with a genomic locus, may not be fully revealed 

at the time of the initial disease-gene discovery. Indeed, approximately 961 genes, or 24% 

of genes implicated in Mendelian disease, now have more than 1 phenotype associated with 

the gene.18,19 The rate of disease-gene discovery continues to outpace that of phenotype 

expansion, highlighting the continued need for dedicated research programs. Many of the 

CMG discoveries are also uncovering molecular and biological processes that can inform 

therapeutic intervention or management, ranging from existing medications known to impact 

a particular metabolic pathway or ion channel, to avoidance of certain medications, to novel 

molecular interventions.20–24
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Impact on the Rare Disease Community

To advance discovery of the underlying basis of Mendelian disease, interactions with 

clinical laboratories are important, both to relay discoveries more rapidly and efficiently 

than the peer review publication process allows and to access primary evidence from 

patient testing. However, navigating the clinical research boundaries can be challenging. 

Many genes discovered and published through traditional research still lack the evidence 

required to definitively establish a role in disease and enable the molecular diagnosis 

of patient symptomatology.25,26 Including genes with limited evidence on clinical testing 

panels increases the number of variants of uncertain significance on patient’s test results 

without increasing yield, which has led many labs to set a threshold of evidence for genes to 

be included on clinical test reports. Giving patients uncertain results can distract them from 

pursuing other causes of disease yet, in other circumstances, empower them to engage in the 

research process. Thus, researchers, clinical labs, and patients must work together to share 

primary evidence, build the clinical genomic knowledgebase, and ensure rapid translation of 

discoveries to patient care.

Thus far, the CMGs have contributed to 419 publications describing novel gene-disease 

discoveries and candidate gene-disease relationships, whereas another 163 articles have 

added to the understanding of known gene-disease relationships. To date, 23.2% (379) of the 

1637 novel gene-disease discoveries have been published in peer-reviewed journals. Many of 

the CMG discoveries and candidates are still in the process of gathering cases and functional 

data or going through the peer review publication process.

Although the primary goal of CMGs was gene discovery, their impact on the genetic 

community goes beyond establishing or clarifying gene-disease relationships. Through 

community outreach, training, and data sharing, the CMGs provided students, clinician-

scientists, and investigators with the training and tools to discover new Mendelian 

disease genes. The CMGs provided educational and networking opportunities by hosting 

in-person courses attended by over 300 analysts and researchers, including the Mendelian 

Data Analysis Workshop (University of Washington), Interpreting Genomes for Rare 

Disease (Broad), and McKusick Short Course in Human and Mammalian Genetics (Baylor-

Hopkins). The CMGs have enabled researchers and clinicians investigating rare Mendelian 

diseases around the world to access gene discovery techniques, including those in countries 

where access to research opportunities is limited, such as the Democratic Republic of the 

Congo,27 South Africa, Kenya, Egypt,28,29 Iraq,30 Chile,31,32 Turkey,33–35 and Lithuania. 

For some, this has involved training opportunities within a CMG-affiliated laboratory, 

whereas for others, learning happened through collaborative meetings to discuss analysis 

results on teleconferences.

To better understand the impact of the CMG program, we surveyed CMG collaborators 

in early 2021. A total of 206 responses were collected, including collaborators from basic 

research (37%), clinical research (33%), clinical practice (24%), and diagnostic laboratories 

(6%). Most were senior investigators with >10 years of experience (63%), although junior 

faculty with <5 years (9%) and 5–10 years of experience (20%) were also well represented, 

whereas some were not in faculty positions (8%). Overall, 70% reported starting new 
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collaborations because of their work with a CMG, and 76% were more likely to share data 

after working with CMGs. Most collaborators (69%) clinically confirm and return results 

identified through the CMG to the rare disease families, but several groups were unable to 

because of insufficient resources.

Sharing Data to Improve Rare Disease Diagnosis

Given the genetic heterogeneity and rarity of Mendelian disease and the diversity of our 

species, rapid and international data sharing is critical to build sufficient evidence to 

unambiguously identify novel gene-disease relationships. Many of the discoveries made by 

the CMGs were only possible because of collaborations, which were necessary for obtaining 

enough samples to convincingly associate a gene with a given phenotype. Data sharing is 

another key element in helping researchers with related cases find each other and work 

together.

Approaches that share only the results or top candidates from sequencing studies are 

inadequate to maximize discovery rates, because not all pathogenic variants are equally 

recognizable. Mendelian disease investigators therefore should design the infrastructure 

of each study in such a way that enables easy sharing of both the genomic data and 

accompanying phenotype and other metadata.

The CMGs have committed to rapid and extensive data sharing (Table 2), developing 

new platforms accessible to the global community and requiring participation by all CMG 

collaborators to the benefit of other researchers and patients with rare diseases. The CMGs 

share data using a variety of tools that support 1 of 3 primary modes of sharing: connecting 

2 parties that each have a predefined candidate gene regardless of whether the variants in 

those genes are the same or different (two-sided matching); allowing one party to query 

another party’s primary data for any variant or certain types of variants (predicted loss-of-

function variants, biallelic rare variants, etc.) in a particular candidate gene (one-sided 

matching); or allowing credentialed researchers who apply for access to the data to directly 

analyze cohorts of read-level sequence data (shared via CRAM files) and detailed metadata 

in structured files to make discoveries in the absence of any identified gene candidates 

(zero-sided matching). By participating in multiple types of data sharing, CMG-sequenced 

data is made accessible to the broadest possible range of researchers and use-cases across 

the rare disease community.

Sharing for two-sided matching (both parties have gene candidates for 

their cases)

Two-sided matching historically occurred through parties listing and/or searching for 

genes of interest on websites, using search engines such as Google as the matcher, or 

emailing inquiries to colleagues. This method can be error prone and time consuming 

and lead to either overly inclusive or limited results. However, websites such as ClinVar 

or mendelian.org allow for data to be shared quickly and openly to anyone with internet 

access. More recently, informatics have been used to create genomics match-making tools 
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that allow matching based on gene and/or phenotype. The CMGs have contributed to both 

website-based and informatics-enabled matching.

CMG website

The coordinating center of the NHGRI Genome Sequencing Program has created a website 

to disseminate information arising from the CMG program (http://mendelian.org/). This site 

hosts a searchable list of phenotypes under investigation, including novel gene-phenotype 

relationships (http://mendelian.org/phenotypes-genes), and a list of all publications that 

acknowledge CMG support.

Matchmaker Exchange

Matchmaker Exchange (MME)13 plays a critical role in facilitating the aggregation of 

individual cases with variants in a given candidate gene. MME is a federated network 

designed to connect databases of gene candidates and phenotypic data via a common 

application programming interface. It allows for computational ranking of matches by 

phenotype and enables collaborators to connect for follow-up and more detailed manual 

comparisons of phenotypes.36 In addition to committing to sharing candidate genes to 

MME, the CMGs have also contributed to this platform by building 3 of the 8 current nodes 

(Gene-Matcher,37 MyGene2,38 and seqr39; Table 3).

ClinVar

In addition to facilitating novel gene-disease relationships and increasing solve rates, data 

generated by the CMGs can be valuable for many other clinical and research uses, including 

clinical molecular diagnosis, characterizing the natural history of disease, and providing the 

foundational data to catalyze interventional and disease mitigation therapeutic strategies. 

To support these efforts, the CMGs have committed to sharing all published variants and 

supporting evidence to ClinVar, an open-source database that collects and reports variant 

and phenotype relationships. Since the inception of the program, the CMGs have together 

submitted over 4200 variants, along with supporting evidence summaries, to ClinVar. The 

center-specific names and pages can be found in Supplemental Table 2.

Sharing for one-sided matching (only one party has a gene candidate and 

wishes to query other primary data sets to find a match that was not 

previously recognized by the other party)

Although two-sided matching is helpful when both parties share a gene or phenotype of 

interest, many researchers have cases that do not yet have an identified candidate gene. 

In addition to these unsolved cases, there remain many candidate genes without matches, 

highlighting the need to search databases of patients with rare diseases for additional copies 

of specific candidate variants or other similar potentially deleterious variants within the 

candidate genes. The CMGs have created 2 databases to support one-sided variant matching. 

These databases also help to exclude candidates, because the variant of interest may be 

found in unaffected relatives or well-phenotyped individuals with unrelated phenotypes with 
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documented absence of the phenotype in question. Nevertheless, caution must be exercised 

in exclusion based on possible nonpenetrance.

The Genotypes to Mendelian Phenotypes (Geno2MP) browser was created by the University 

of Washington CMG to facilitate new gene discovery efforts and prioritization of candidate 

variants. It contains aggregate genotype data from >19,000 samples (>15 million rare 

variants with <2.5% frequency in gnomAD) sequenced by the University of Washington, 

Broad, and Yale CMGs (https://geno2mp.gs.washington.edu/).40 Each rare variant is linked 

to de-identified phenotypic information about the affected individuals and unaffected 

relatives who carry the variant. Genotypes to Mendelian Phenotypes users may contact 

original submitters of the samples through the website and provide details about their own 

cases to pursue potential gene discovery matches.

VariantMatcher, created by the Baylor-Hopkins CMG, allows users to query rare (<1% 

allele frequency), non-synonymous variants from over 6151 samples sequenced by the 

Baylor-Hopkins CMG for specific variants of interest. Users of the site must register and 

be approved by site administrators. If phenotypic features are submitted in combination 

with the variant in the query, the phenotype from the matched entry will be shared in a 

simultaneous email to the submitter and the matching investigator. If a match is not made, 

the queried coordinates with submitted phenotypes can be stored for future matching.

Sharing for zero-sided matching (querying larger, combined data sets 

to identify novel gene-disease candidates in the absence of any prior 

identified gene candidate)

Novel methods and aggregation of larger data sets will be needed to solve cases that 

remain unsolved after thorough analysis by the CMGs. In the initial years of the program, 

CRAM files from the CMGs were shared through dbGaP (NIH Database of Genotypes 

and Phenotypes), but access for analysis required download and storage. The center-specific 

study accession numbers can be found in Supplemental Table 2. As genomic data grows in 

scale, the community needs better solutions.

NHGRI’s Genomic Data Science Analysis, Visualization, and Informatics Lab-space 

(AnVIL) is a cloud-based environment where both data and tools can coexist, thereby 

improving logistics for the wider community to be able to share and access them together. 

AnVIL is assembling the most commonly used tools and pipelines to support genomic 

analysis and make them available on the AnVIL platform. In addition, investigators can add 

their own tools to the platform. There are currently a number of workflows important in rare 

disease analysis set up in AnVIL, including germline variant calling with GATK, RNA-seq 

processing, and mitochondrial variant calling. The seqr analysis platform is on AnVIL, and 

any researcher can request that a jointly called vcf located within an AnVIL workspace be 

loaded in seqr. By creating an environment to share tools and pipelines, the application of 

analysis methods to data sets will be facilitated, allowing for comparison of the performance 

of approaches to each other to help develop best practices. The introduction of novel tools 

and methods will be immediately leveraged and readily testable. This will ultimately allow 
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authorized researchers anywhere in the world to explore their own hypotheses using CMG 

data and a constantly evolving set of analysis tools.

CMG data sharing has transitioned to AnVIL, where >60 terabytes of data are available 

alongside other common and rare disease data sets. As of this publication, the CMGs 

have deposited over 15,025 exomes and 707 genomes to 39 AnVIL workspaces (https://

anvilproject.org/data). In addition to the raw sequencing data, the CMGs have uploaded 

accompanying metadata for each sample, including sample-, subject-, family-, discovery-, 

and sequence-level information (see Supplemental Table 3 for file formats and data 

dictionary).

Although the tools and workflows are open access for anyone logging into the interface, 

AnVIL data sets have 3 types of data access: open access, controlled access, and consortium 

access. To learn more about the types of AnVIL access and examples, see Supplemental 

Table 4. All CMG data sets are controlled access, meaning researchers must request access 

through dbGaP and obtain permission for use, consistent with the subjects’ informed consent 

(eg, General Research Use, disease-specific research and clinical care). Access is regulated 

in accordance with NIH policy and full details can be found at https://anvilproject.org/data/

requesting-data-access.

Development of Tools and Improved Methods

The CMGs have developed the open-source analysis tools PhenoDB and seqr (Pais 

L, Snow H, Weisburd B, et al. seqr: a web-based analysis and collaboration tool 

for rare disease genomics. https://doi.org/10.1101/2021.10.27.21265326) for filtering and 

prioritizing variants in individuals or families with Mendelian disease.41 These platforms 

enable streamlined analysis of exome or genome sequence data through incorporation of in 
silico predictions and population and disease databases, as well as integration with other 

external databases to facilitate review of novel candidates (eg, GeneCards, Mouse Genome 

Informatics). Clinical data as structured Human Phenotype Ontology (HPO) terms and 

pedigree data can also be recorded, enabling coupling of genetic and phenotypic data. 

These web-based tools facilitate collaboration by providing a platform for researchers 

from disparate locations to work as a team on analyses. PhenoDB and seqr continue to 

be periodically updated and are available for free download and implementation, thereby 

providing broadly useful resources for Mendelian disease research.

The CMGs have also developed or contributed to methods to reanalyze exome data 

from unsolved cases using semiautomated pipelines and updated annotations. This yielded 

confirmed or potential genetic diagnoses in up to one third of unsolved cases, mostly 

within disease genes published after initial analysis.42,43 Although the pace of disease-gene 

discovery emphasizes the importance of periodic reanalysis, it is the automation of these 

processes that will meet the challenge of a continued accrual of unsolved cases. CMG 

investigators have also developed and applied gene-centric analyses to identify candidate 

disease genes in exome-negative cohorts, such as burden tests, to identify genes enriched in 

deleterious rare variants across cases with the same phenotype44,45 and a phenotype-agnostic 

method that prioritizes genes most likely to underlie Mendelian disease.46 Reanalysis 
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methods for more complicated patterns of inheritance led to the development of a two-locus 

genome-wide test that enables detection of digenic inheritance in exome data.47

CMG investigators have successfully applied sequencing approaches beyond the exome to 

identify or validate causal variant(s), including genome, RNA, bisulfite DNA methylation 

sequencing, and long-read genome sequencing, showing their utility in cases where ES fails 

to find a molecular diagnosis. Examples include utilizing genome sequencing to identify 

pathogenic structural variants missed by exome, such as the homozygous inversion in QDPR 
detected in a patient with dihydropteridine reductase deficiency;48 applying RNA-seq to 

identify genes with aberrant expression and/or splicing, including an intronic variant in 

trans with a missense in muscle disease gene DES that resulted in a pseudoexon insertion 

and allelic imbalance49; using bisulfite sequencing to identify gene silencing epivariation, 

such as the characterization of aberrant hypermethylation associated with a pathogenic 

repeat expansion in the XYLT1 promoter region17; and the application of long-read 

genome sequencing to characterize a complex genomic rearrangement involving an inverted 

triplication flanked by duplications in a proband with Temple syndrome.50

Data Sharing Empowers and Expedites Solving Rare Disease

There are a number of unsolved syndromes that have perplexed the clinical genetics 

community for decades.51 Although collectively the CMGs have sequenced over 28,991 

families, each individual CMG often has only a handful of cases of a given phenotype. 

We formed the CMG Data Analysis working group to share cohorts across the CMGs 

to increase power to solving these challenging phenotypes. For our pilot project focusing 

on Dubowitz syndrome, we built a cohort of 20 individuals from 16 clinically diagnosed 

families. It would have been very challenging to collect this many families with a rare 

condition without access to an international network of researchers and clinicians. On 

analysis, no two cases shared the same genetic diagnosis and no specific pathways were 

identified. A collaboration was then established with the Canadian Care4Rare Program, 

which had been building a similar cohort. Only after combining the CMG and Care4Rare 

cohorts (31 individuals from 27 families) was the group able to recognize that the diagnosis 

of Dubowitz syndrome was not pointing to a single disorder but a collection of disorders 

with overlapping phenotypic features, highlighting the benefit of data aggregation for these 

studies. Overall, we found that the Dubowitz syndrome phenotype has extensive locus 

heterogeneity rather than a single gene etiology. Diagnoses were made for a number of 

recently molecularly defined and phenotypically similar conditions with growth restriction, 

microcephaly, and developmental delay, with a molecular diagnosis made in 13 of 27 

families (48%) or strong candidate variants in known and candidate disease genes identified 

in an additional 7 of 27 families (26%).52 This experience highlights the need to continue 

to work across national and international rare disease programs to build larger cohorts for 

rare conditions, both to discover unifying genetic causes and, as in the case of Dubowitz 

syndrome, to provide evidence refuting that a cluster of features represents a single 

syndrome.

Model organism data are an important component of gene discovery. Even when multiple 

families with overlapping phenotypes have had a variant identified in the same gene, 

Baxter et al. Page 11

Genet Med. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



establishing a causal gene-disease relationship can be difficult. As part of the effort to clarify 

these relationships, the CMGs formed a collaboration with the Knock-Out Mouse Project to 

help prioritize genes that may be important for human disease (https://www.komp.org). We 

shared candidate genes after a short embargo period, and results were shared through the 

International Mouse Phenotype Consortium database. Several gene discoveries, including 

TONSL for skeletal dysplasia and FAM92A for limb and digit anomalies, were supported by 

this collaborative mechanism.53,54

Future Goals of Mendelian Rare Disease Genomics

As the CMG program comes to a close, additional work is still needed to identify the genetic 

basis of Mendelian disease for many families. Hundreds of novel gene-disease candidates 

were identified, but many still lack sufficient data to confirm or refute the relationship. Over 

half of the families sequenced remain unsolved despite having phenotypes that are strongly 

suggestive of a Mendelian cause. There are also thousands of genes predicted by human 

or model organism data to result in a human phenotype when disrupted that have not yet 

been linked to a human phenotype.55,56 The mission started by the CMGs remains far from 

finished, but the data and tools developed will continue to support the ongoing research 

efforts in this area.

New bioinformatic methods and resources are needed to help address the limitations 

of current analytical approaches and variant detection, and interpreting rare variation 

in the genome is a major barrier for achieving genetic diagnoses. Telomere-to-telomere 

genome assembly and the use of a pan-genome human reference sequence representing 

diverse ancestries will improve variant interpretation57 (Nurk S, Koren S, Rhie A, et al. 

The complete sequence of a human genome. https://doi.org/10.1101/2021.05.26.445798); 

however, it will also require new analytical pipelines (Kaminow B, Ballouz S, Gillis 

J, Dobin A. Virtue as the mean: panhuman consensus genome significantly improves 

the accuracy of RNA-seq analyses. https://doi.org/10.1101/2020.12.22.423111), including 

support for graph-based representation typically used for pan-genome data.58 Improved 

annotation of enhancers and promoter regions, which benefit by leveraging data from 

the Encyclopedia of DNA Elements project, can further facilitate variant interpretation, 

particularly for genome analyses.59,60

Efforts to resolve variants of uncertain significance, particularly missense variant alleles, 

are needed. With progress in recent years for deep mutational scanning, there is now 

an international focus through the Atlas of Variant Effect Alliance, which aims to 

systematically determine the impact of variants in functionally important genomic regions.61 

The application of artificial intelligence methods for predicting the functional effect of 

variants also offers an avenue for improving in silico predictions of pathogenicity.62,63 Much 

of our knowledge about gene and transcript expression patterns relies on adult tissue; the 

Developmental Genotype-Tissue Expression (dGTEx) and Pediatric Cell Atlas initiatives 

will facilitate interpretation for developmental disorders.64

Population data sets and analytical tools that aid the interpretation of long-read sequencing 

and methylation data in patients with rare diseases will be needed to help realize 
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the diagnostic utility of these technologies. Furthermore, the integration of methylation, 

structural, and RNA-seq data into variant analytical tools will ultimately be required to 

streamline analysis for cases remaining unsolved after ES, particularly for compound 

heterozygotes where only one of the variants will be detected and prioritized by exome 

or genome.

Although CMGs strived to include collaborators and cases from around the world (Figure 

1B), there is still progress to be made on the diversity of both the participating researchers 

we collaborate with and the genetic ancestry of the cases sequenced. A total of 73% of 

collaborators reported their ancestry to be White/European, and the majority (58%) were 

male. Additionally, 67% percent of the cases sequenced were also White/European. To make 

good on the promise of genomics, a much greater fraction of the world’s populations must 

be involved. Research programs must push to expand the diversity of the research workforce 

as well as the families and individuals studied.

Debate continues regarding models for funding rare disease research, either distributing 

funds to individual rare disease investigators working in their own fields or centralizing 

funding for centers that can build infrastructure used by many investigators. The success of 

the CMG collaborators in discoveries, publications, data sharing, and subsequent research 

funding highlights the power of centralized funding for centers. The CMG structure has 

allowed for sequencing and analysis of invaluable samples to be performed in centers of 

excellence by teams of experts, and more than that, it has facilitated investigators of the 

same rare disease around the world to connect and collaborate. This approach offers cost 

efficiency by distributing shared infrastructure across large numbers of investigators and 

enabling better data sharing and cohort aggregation for increased statistical power. There 

are also limitations. Participants were not directly recruited by the CMGs, which can make 

collecting detailed phenotypes more challenging; recontact/reconsent for follow-up studies 

was typically not feasible; and reviewing the data-sharing language in the hundreds of 

submitting collaborator consent forms required substantial overhead. Additionally, because 

the CMG data set consisted of a highly heterogeneous set of phenotypes, large-scale 

analyses such as enrichment analyses were not practical. In this decade of gene discovery 

by the CMGs, there has been substantial progress made, but much remains to be done. 

As routine genomic analysis becomes more successful, and approaching a 40% diagnosis 

rate in clinical diagnostic labs becomes more attainable,65 the cases that remain unsolved 

are increasingly challenging. Undiscovered diseases are ultra rare, the functional impact 

of variation is difficult to determine, and causality is hard to prove, particularly for 

variants with incomplete penetrance and complex genetic architectures. Gene discovery rates 

remain steady, highlighting the continued need for national and international programs in 

rare disease genomic analysis, including the recently funded GREGoR Consortium (https://

gregorconsortium.org).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of the Centers for Mendelian Genomics (CMGs) by numbers.
(A) A high-level summary of activities performed by the CMGs, including the number of 

collaborators, number of kindreds, volume of testing performed, and discovery rates. (B) 

Map of CMG collaborators. Blue indicates that the CMGs collaborated with at least 1 

researcher in that country (based on country listing in PubMed affiliations). (C) Data-sharing 

metrics for the CMGs.
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Figure 2. Solve and discovery rates by high-level Human Phenotype Ontology (HPO) category.
Kindreds were categorized as having phenotypes in 1 HPO high-level system or multiple 

high-level systems. From there, the solve and discovery types were analyzed for each 

system. There were 494 kindreds in our Center for Mendelian Genomics (CMG) cohort with 

no HPO terms available, and therefore they were not able to be included in this analysis. 

Systems with fewer than 10 kindreds were noted but excluded.
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