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Abstract

Background: In the past few years, imputation approaches have been mainly used in population-based designs
of genome-wide association studies, although both family- and population-based imputation methods have been
proposed. With the recent surge of family-based designs, family-based imputation has become more important.
Imputation methods for both designs are based on identity-by-descent (IBD) information. Apart from imputation, the
use of IBD information is also common for several types of genetic analysis, including pedigree-based linkage analysis.

Methods: We compared the performance of several family- and population-based imputation methods in large
pedigrees provided by Genetic Analysis Workshop 19 (GAW19). We also evaluated the performance of a new IBD
mapping approach that we propose, which combines IBD information from known pedigrees with information
from unrelated individuals.

Results: Different combinations of the imputation methods have varied imputation accuracies. Moreover, we
showed gains from the use of both known pedigrees and unrelated individuals with our IBD mapping approach
over the use of known pedigrees only.

Conclusions: Our results represent accuracies of different combinations of imputation methods that may be
useful for data sets similar to the GAW19 pedigree data. Our IBD mapping approach, which uses both known
pedigree and unrelated individuals, performed better than classical linkage analysis.
Background
In the last few years, imputation approaches have been
widely used in genetic studies, especially in the context
of genome-wide association studies and population-
based designs. This is a result of an attractive feature of
imputation: it increases genetic information at low-cost.
Moreover, imputation allows meta-analysis between dif-
ferent studies, especially when different genotyping
platforms are used. The main idea of imputation is to:
(a) genotype or sequence a small subset of individuals
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on a dense single nucleotide polymorphism (SNP)
panel, (b) genotype remaining individuals on a sparse
SNP panel, and (c) use statistical methods for imput-
ation, generally based on hidden Markov models, to
impute untyped SNPs from the dense panel into these
individuals with only sparse (or no) genotyped SNPs.
Imputation approaches have been proposed for both

family- and population-based designs. However, the
performance of these approaches has not yet been thor-
oughly evaluated and compared in pedigree data. The
availability of the International Haplotype Map Project
(HapMap) [1] and the 1000 Genomes Project [2] have
allowed population-based imputation to become wide-
spread. However, these databases are not ideal for
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family-based imputation methods, which require that
the dense SNP panel individuals be selected from pedi-
grees. In addition, imputation approaches for large ped-
igrees are more challenging, and only quite recently has
an approach been proposed and implemented in the
program called Genotype Imputation Given Inheritance
(GIGI) [3] that is able to efficiently handle large pedi-
grees and accurately impute rare variants. The search
for rare risk variants has made imputation in family-
based designs more important, because of enrichment
of such variants in relatively large pedigrees [4] since
linkage analysis may be powerful for initiating rare vari-
ant identification. An attractive study design is to (a)
perform linkage analysis, (b) perform imputation in the
region(s) with linkage signals, and (c) perform associ-
ation analysis on the imputation data in these regions.
It is well-established that larger pedigrees are advanta-
geous for this linkage analysis component.
Identity-by-descent (IBD) underpins both linkage ana-

lysis and imputation. For linkage analysis, once IBD has
been determined, the pedigree structure is no longer
needed for subsequent computations. For imputation,
IBD within pedigrees or (ancestrally) across individuals
is used as a source of correlation between individuals for
family- and population-based imputation.
In this study, we evaluated and compared the perform-

ance of several family- and population-based imputation
approaches in the Mexican American pedigree data pro-
vided by Genetic Analysis Workshop 19 (GAW19). We
also evaluated the effect on imputation accuracy of the
number of selected individuals for sequencing and the
way they were selected, randomly or by tailored selection
with GIGI-Pick [5]. In addition, we evaluated the per-
formance of a new IBD mapping approach that we
propose, which combines IBD information inferred (a)
using a sparse SNP panel from known pedigrees, and (b)
using a dense SNP panel from unrelated individuals
across pedigrees.

Methods
Data
All our analyses used chromosome 3. For population-
based imputation, we used the whole genome sequence
data on the 464 sequenced individuals in a region of
2.5 Mbp (Marker Set 1 [MS-1]; Table 1). These individ-
uals belong to 16 pedigrees. For the purpose of IBD
Table 1 Marker sets

Marker sets Number of
SNPs

Relevant information

MS-1 ~15,000 chr 3: 46,750 Kbp–49,250 Kbp

MS-2 351 Mean spacing ~0.64 cM; in linkage equilibrium

MS-3 48,892 MAF > 0.05; genotype completion > 99 %

chr chromosome, MAF minor allele frequency
estimation within pedigrees, required for pedigree-
based imputation, we used a set of 351 well-spaced
SNPs (Marker Set 2 [MS-2]; Table 1) extracted from
the SNP data of all genotyped individuals in these 16
pedigrees. Physical positions were converted to meiotic
map positions (cM) by reference to the Rutgers map
[6], and converted to positions based on the Haldane
map function. For IBD mapping analysis based on a
meiotic map, with the knowledge of the trait simula-
tion model provided in the “Answers” file obtained
with the data, MS-2 was used to compute IBD within
pedigrees. We focused the IBD mapping analysis on 7
pedigrees (Pedigrees 05, 06, 07, 08, 10, 21, 25; total
number of 529 individuals) that showed high levels of
relatedness on the basis of Genetic Analysis Workshop
18 analysis [7]. We selected 17 pairs of individuals (21
distinct individuals) who had shown high levels of pair-
wise kinship and were not related by the pedigree infor-
mation. For these 21 cryptically related individuals, we
used Marker Set 3 (MS-3) (Table 1) to infer IBD among
“unrelated” individuals.

Selection of dense SNP panel individuals for imputation
Among the 464 sequenced individuals, we chose to
include 100 or 200 of them as if genotyped on the
dense SNP panel. In proportion to the number of
sequenced individuals in each pedigree, we selected
individuals following 2 strategies: (a) random selec-
tion or (b) via GIGI-Pick (a method to help with in-
formative choices) [5]. For GIGI-Pick, we used the
genome-wide coverage option, which selects subjects
based on the pedigree structure. In the group of the
remaining 264 or 364 individuals, we extracted geno-
types of SNPs present in the SNP chip of our region
of interest (~700 SNPs), to form the set of sparse
SNP panel individual data set.

Population-based imputation
We performed 2-step imputation, with pre-phasing of
markers in the first step, and imputation in the second
step. The pre-phasing algorithms/programs we used
were: BEAGLE [8], IMPUTE2 [9], MaCH [10], and
SHAPEIT [11]. For SHAPEIT, we used 2 types of phas-
ing. The first accounts for some pedigree structure in-
formation (called here SHAPEITped) while the second
ignores the pedigree structure (SHAPEIT). Using the
obtained phased genotypes, we performed imputation
using the following algorithms/programs: BEAGLE,
IMPUTE2, MaCH, minimac, and MaCHAdmix [12].
We implemented the following combinations of 2-step
imputation (Pre-phasing–Imputation):

� BEAGLE–BEAGLE, SHAPEIT–BEAGLE, and
SHAPEITped–BEAGLE;
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� MaCH–MaCH, MaCH–minimac, SHAPEIT–
minimac, and SHAPEITped–minimac;

� MaCH–MaCHAdmix, SHAPEIT–MaCHAdmix,
and SHAPEITped–MaCHAdmix;

� IMPUTE2–IMPUTE2, SHAPEIT–IMPUTE2,
and SHAPEITped–IMPUTE2.

Family-based imputation
We performed pedigree-based imputation using GIGI
[3]. This method uses inheritance vector (IV) realiza-
tions, reflecting the IBD flow in pedigrees, estimated on
the sparse SNP panel (MS-2) for all individuals. The
MORGAN/gl_auto program [13] was used to obtain
these IV realizations. Based on these IV realizations,
the dense SNP panel, the meiotic map, the allele fre-
quencies of the dense SNPs, and the pedigree structure,
GIGI infers the missing genotypes at untyped SNPs. Note
that the first step (IBD estimation) is equivalent to the
prephasing step used by population-based approaches.

Combining family- and population-based imputation
We also combined imputation obtained by GIGI
and population-based approaches via a flexible
framework described elsewhere [14]. We compared
3 versions: (a) GIGI + SHAPEITped–BEAGLE, (b)
GIGI + SHAPEITped–IMPUTE2, and (c) GIGI +
SHAPEITped–minimac. As a metric of imputation
accuracy, we calculated 2 mean correlation measures for
all of the versions described above: (a) ρ1 = sum of correl-
ation/total number of imputed SNPs (given minor allele
frequency, MAF, in imputed data > 0), and (b) ρ2 = sum of
correlation/total number of imputed SNPs in the refer-
ence panel (given MAF in reference panel data > 0). Cor-
relation was computed for each SNP between the true and
the imputed genotypes in the sparse SNP panel individ-
uals, and then averaged across all imputed SNPs. As a
metric of imputation accuracy, the use of correlation,
which implicitly adjusts for the MAF of SNPs, is better
than the use of concordance, which gives misleading re-
sults for rare variants. Other existing measures could also
be used but there is no clear consensus in the literature
of which performs best in all situations. In any case,
our aim was to compare the accuracy between ap-
proaches and not to evaluate the accuracy per se for
each approach. In this case, the correlation measure
provides the necessary information for this comparison
for both rare and common variants.

IBD-mapping analysis
We used a set of 1000 IBD graphs [15, 16] that had been
realized on the 7 pedigrees by the MORGAN/gl_auto
program using the MS-2 subset of SNPs. Using the
MORGAN/ibd_haplo program and MS-3, we found that
many of the 17 pairs of individuals share IBD in the
range 50 to 75 cM on chromosome 3, and that all pairs
gave a strong signal of IBD at 69 cM. To infer IBD
between the cryptically related individuals, we used a
new program, ibd_stitch [17], which permits jointly-
consistent location-specific IBD to be inferred among
multiple individuals. Using ibd_stitch, 1000 IBD graphs
in compact format [17] were realized jointly on the 21
distinct individuals. We wrote new R code to merge the
joint 21-individual IBD graphs on the cryptically related
individuals, with the IBD graphs on the 7 pedigrees. The
merging was done in 2 groups (pedigrees 05, 06, 21, 25
and 10, 08, 07), which were chosen so that the merged
graph had 2 components with an approximately equal
number of individuals, with no cryptically related pairs
linking the two groups. The merging was performed at
the 351 MS-2 SNP positions to give 1000 IBD graphs on
the combined set of 529 individuals. These merged
graphs thus included location-specific between-family
IBD in addition to the pedigree IBD. Given IBD graphs
realized conditional on SNP data, logarithm of the odds
(LOD) scores can be computed without further reference
to the pedigree structures or SNP data [15]. Additionally,
the MORGAN/gl_lods program uses equivalence of IBD
graphs across realizations and across locations [16], to
ensure that each distinct LOD score contribution is
computed once only.
We used the 200 simulated traits of diastolic blood

pressure (DBP) with a causal gene (MAP4) at 69 cM
(47,892,180 to 48,130,769 bp) on chromosome 3. Trait
data were preadjusted for age, sex, and current use of
antihypertensive medications, and we used a trait model
previously developed [7] for this gene (quantitative trait
locus model with parameters defined by the SNP with
the biggest contribution to the simulated trait variance).
Using the MORGAN/gl_lods program, we computed
LOD scores at the MS-2 SNP positions, for all 200 traits,
on each of the 7 component families and on the merged
IBD graphs that included the between-family IBD. We
can thus compare the LOD scores calculated from the
IBD graphs containing pedigree data only, with the IBD
graphs of merged pedigree and population IBD.

Results
Imputation accuracy
Our results for several MAF bins were: rare variants ∈
(0,0.01], uncommon variants ∈(0.01,0.15], and common
variants ∈ (0.15,0.5]. Table 2 shows that the prephasing
algorithm has great influence on the imputation accur-
acy for every MAF bin. The use of the SHAPEITped
algorithm gave the best imputation performance for
every imputation algorithm used, and for every MAF
bin. For example, in the case of rare variants, when we
used BEAGLE for imputation, the mean correlation (ρ1)
increased by 0.07 when SHAPEITped was used for pre-



Table 2 Random selection of 200 reference/dense SNP panel individuals

(0–0.01]: #SNPs = 4604 SNPs (0.01–0.15]: #SNPs = 1765 SNPs (0.15–0.5]: #SNPs = 979 SNPs

Imputation approaches #SNPe ρ1 ρ2 #SNPe ρ1 ρ2 #SNPe ρ1 ρ2
BEAGLE-BEAGLE 4325 0.209 0.196 1673 0.587 0.556 976 0.897 0.895

SHAPEITped-BEAGLE 4554 0.270 0.267 1763 0.730 0.729 979 0.978 0.978

MaCH-MaCH 4388 0.332 0.316 1755 0.595 0.591 979 0.801 0.801

MaCH-minimac 4523 0.460 0.452 1763 0.706 0.706 979 0.910 0.910

SHAPEITped-minimac 4507 0.642 0.629 1765 0.894 0.894 979 0.985 0.985

MaCH-MaCHAdmix 4340 0.420 0.396 1754 0.687 0.683 979 0.896 0.896

SHAPEITped-MaCHAdmix 4352 0.527 0.498 1760 0.773 0.770 979 0.904 0.904

GIGI 3763 0.610 0.498 1719 0.557 0.542 979 0.581 0.581

IMPUTE2-IMPUTE2 4230 0.370 0.340 1735 0.660 0.649 978 0.898 0.897

SHAPEITped-IMPUTE2 4401 0.485 0.464 1741 0.713 0.703 979 0.923 0.923

GIGI + SHAPEITped-BEAGLE 4507 0.643 0.630 1764 0.790 0.789 979 0.972 0.972

GIGI + SHAPEITped-minimac 4507 0.693 0.678 1764 0.860 0.860 979 0.980 0.980

GIGI + SHAPEITped-IMPUTE2 4491 0.635 0.619 1746 0.740 0.732 979 0.876 0.876

#SNPs is the total number of SNPs in the reference panel; #SNPe is the number of imputed SNPs as polymorphic; ρ1 is the mean correlation of all SNPs:
sum(correlation)/#SNPe; ρ2 = sum(correlation)/#SNPs
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phasing rather than BEAGLE. The increase is even more
striking (~0.18) for the imputation using minimac and
the pre-phasing using SHAPEITped rather than MaCH.
Accounting for the pedigree structure information dur-
ing pre-phasing (SHAPEITped) showed a slight but con-
sistently better imputation accuracy for all approaches
and MAF bins (increase of ~0.02; results not shown).
Interestingly, SHAPEITped–minimac outperformed all

other population-based approaches for all MAF bins.
This great performance increase was more striking for
rare variants, where GIGI was also outperformed,
slightly, by approximately 0.02. For this bin of MAF,
BEAGLE–BEAGLE was the worst. Note that all
population-based approaches performed similarly for
common variants. Moreover, as expected, these ap-
proaches improved with increasing MAF, unlike GIGI
whose performance slightly decreased. In these admixed
pedigrees, our results also showed that MaCH–Admix
(which allows for admixture), is better than MaCH–
MaCH (does not allow for admixture) for rare and
uncommon variants, where the difference of imputation
accuracy was approximately 0.1. For common variants,
both approaches led to similar results. This result
stresses the need, in such data, of using imputation
programs that allow for admixture in order to improve
imputation accuracy.
Surprisingly, MaCH–minimac consistently outper-

formed MaCH–MaCH. Despite the claim that minimac
and MaCH use same imputation algorithms, our
results suggest otherwise, and that minimac’s undocu-
mented algorithm may be better. To investigate this
result and to determine if the difference might be a re-
sult of possible bias in calling the sequence data (eg, if
sequence calling was performed using part of the mini-
mac algorithm), we simulated sequence data on the
same GAW19 pedigrees but used European ancestry
data. We performed analysis with MaCH–MaCH,
MaCH–minimac, SHAPEITped–minimac, and GIGI.
Interestingly, GIGI performed better than all ap-
proaches for rare variants on these data (ρ1 = 0.23, 0.27,
0.39, and 0.54, respectively). In addition, MaCH–mini-
mac performed better than MaCH–MaCH, which
means that minimac’s imputation algorithm still may
be better than the one used in MaCH. The underper-
formance of GIGI in the GAW19 data for rare variants,
and possibly also the common variants, might be the
result of using an admixed population. In fact, when
GIGI is not able to impute genotypes using pedigree
information, it draws them from the pre-specified
population MAF. If these frequencies are inaccurate,
resulting poor imputation is likely.
In the GAW19 Mexican American pedigrees, there

are different amounts of admixture across pedigrees,
suggesting the need for using pedigree-specific allele
frequencies to improve GIGI’s imputation. To investi-
gate this, we explored GIGI’s accuracy per pedigree
depending on the admixture level estimated in Blue
et al. [18]. However, we did not observe any correlation
between admixture in pedigrees and GIGI’s accuracy
(results not shown). Another possible explanation is
that undetected Mendelian consistent errors, which
were not in the simulated genotype data, could have led
to poor IV estimation and hence poor imputation
performance.
We also applied our framework to combine family-

and population-based imputation data. We combined
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imputation results from GIGI and three 2-step population-
based imputation approaches: (a) SHAPEITped–BEAGLE,
(b) SHAPEITped–minimac, and (c) SHAPEITped–
IMPUTE2. Overall, we show a slight improvement in
imputation accuracy from using the combined data,
for rare and uncommon variants, but less for common
variants. This trend could be seen by the 2 correlation
measures, but especially by ρ2. This measure reflects
the total amount of imputation information we can
glean from the 2 different sources of correlation in
the data. In addition, combining both population- and
pedigree-based approaches resulted in an increase in
the number of imputed SNPs that are polymorphic in
the sample.

Influence of GIGI-Pick
The selection of reference panel individuals using GIGI-
Pick showed a slight increase in imputation accuracy
compared to random selection, for the subset of
approaches we used (Fig. 1). For all MAF bins, MaCH–
minimac improved the most through use of GIGI-Pick.
GIGI also improved consistently across MAF bins, espe-
cially for rare variants where it previously was shown to
perform well [3]. Also, as shown in Fig. 1, we observed
relatively better imputation accuracy with GIGI using
smaller numbers of reference panel individuals across
all MAF bins. An explanation for this better accuracy
might be a decrease of Mendelian consistent errors
when fewer reference panels are used. For population-
Fig. 1 Mean correlations between imputed and reference panels from d
randomly or via GIGI-Pick. The different imputation approaches for the
Mean correlations (ρ1) are on the y-axis
based imputation, as expected, accuracy was better for
higher numbers of reference panel individuals for rare
and uncommon variant bins. However, accuracy was
worse for common variants. This is likely explained by
the decrease of phasing performance in the sparse
panel individual data set when its size decreases.

IBD mapping analysis
Figure 2 shows the results of the LOD score analyses
with the pedigree only and the merged population and
pedigree IBD. For the unmerged IBD, there were no
strong linkage signals (average LOD score is slightly
higher than 1). Interestingly, adding the additional IBD
inferred between the pedigrees with the merging
process resulted in a much stronger linkage signal in
the trait region from 50 to 75 cM where the average
LOD score exceeds 3. The results show that significant
extra information can be gained by merging IBD in-
ferred jointly from denser MS-3 SNPs among more re-
motely related individuals with that inferred in known
pedigrees using sparse MS-2SNPs.

Discussion and conclusions
We compared the performance of several imputation
approaches in pedigree data provided by GAW19 orga-
nizers. Also, we proposed and evaluated the perform-
ance of a new IBD mapping approach that combines
IBD information from both unrelated and related indi-
viduals, by pedigrees, in order to identify genes
ifferent imputation approaches. Individuals were selected
3MAF bins (ie, (0–0.01], (0.01–0.15], and (0.15–0.5] are on the x-axis.



Fig. 2 LOD score curves for merged IBD graphs for all 200 simulated traits (cyan lines) with their average (solid black line), and the average LOD
score for the unmerged graphs (dashed black line). The location of the MAP4 gene is indicated by the vertical line
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implicated in complex traits. We showed that using
the SHAPEIT program for pre-phasing, with its option
that handles pedigree structure, along with the imput-
ation program minimac, led to the best imputation
performance for both rare and common variants. This
population-based imputation approach outperformed
GIGI (a family-based imputation method) not only for
common variants but also for rare variants. This result
was not expected for rare variants, and might be spe-
cific to this admixed data set as indicated by our re-
sults from simulated sequence data derived from
European samples. Beside this specific result, most of the
remaining results observed in GAW19 data were generally
consistent with what we observed in our earlier simula-
tions, which makes the results generalizable. On the other
hand, our new IBD mapping approach shows promise, as
it appeared to perform better than classic linkage analysis
that uses only known related individuals in pedigrees.
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