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PROCEEDINGS Open Access

Estimating relationships between
phenotypes and subjects drawn from
admixed families
Elizabeth M. Blue1*, Lisa A. Brown2, Matthew P. Conomos2, Jennifer L. Kirk2, Alejandro Q. Nato Jr1, Alice B. Popejoy4,
Jesse Raffa3, John Ranola3, Ellen M. Wijsman1,2 and Timothy Thornton2

From Genetic Analysis Workshop 19
Vienna, Austria. 24-26 August 2014

Abstract

Background: Estimating relationships among subjects in a sample, within family structures or caused by population
substructure, is complicated in admixed populations. Inaccurate allele frequencies can bias both kinship estimates
and tests for association between subjects and a phenotype. We analyzed the simulated and real family data from
Genetic Analysis Workshop 19, and were aware of the simulation model.

Results: We found that kinship estimation is more accurate when marker data include common variants whose
frequencies are less variable across populations. Estimates of heritability and association vary with age for
longitudinally measured traits. Accounting for local ancestry identified different true associations than those
identified by a traditional approach. Principal components aid kinship estimation and tests for association, but their
utility is influenced by the frequency of the markers used to generate them.

Conclusions: Admixed families can provide a powerful resource for detecting disease loci, as well as analytical
challenges. Allele frequencies, although difficult to adequately estimate in admixed populations, have a strong
impact on the estimation of kinship, ancestry, and association with phenotypes. Approaches that acknowledge
population structure in admixed families outperform those which ignore it.

Background
Estimates of the kinship coefficient, defined as the probabil-
ity that 2 alleles randomly sampled from 2 subjects are
identical by descent, have many uses [1]. These include
verifying pedigrees and sample identity [2], and tests for as-
sociation [3]. Pruning markers for linkage disequilibrium
(LD) [3] and minor allele frequency (MAF) improves kin-
ship estimation. Sequence data offers additional challenges
by discovering novel and very rare variants without accur-
ate MAFs. We investigate kinship estimators and subsets of
whole genome sequence (WGS) data from Genetic Analysis
Workshop 19 (GAW19) to examine bias and accuracy.

We explored whether genetic associations with systolic
blood pressure (SBP) changed over time using longitu-
dinal data. We estimated heritability and performed a
kinship-adjusted half-genome-wide association test at
the first and third visits for real SBP. We discuss the
similarities, differences, and potential foundations for
those changes.
Through both selection and drift, different populations

can have different variants influencing the same trait, or
very different frequencies of shared risk alleles. Admix-
ture mapping takes advantage of these differences to
identify risk loci [4]. Using the simulated SBP phenotype,
we compare the power of RFMix, an accurate admixture
mapping approach [4], to a traditional association test.
When testing for association between genotype and

phenotype, principal components (PCs) are often included
as covariates to minimize the effects of population
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structure. We investigated how well PCs estimated on dif-
ferent subsets of the data were able to capture ancestry
proportions. Performance was evaluated with the coeffi-
cient of determination.

Methods
Genetic map and markers
We used GAW19 genome-wide association study
(GWAS) data for odd-numbered autosomes for asso-
ciation testing and admixture mapping. Data were
available on 959 subjects from 20 pedigrees. Sex-
averaged map positions (cM) were converted by the
Haldane map function from the Rutgers framework
map with all of the Single Nucleotide Polymorphism
database 134 (dbSNP134) variants [5]. The GAW19
WGS data for odd-numbered autosomes for 464
subjects from 20 pedigrees that passed the Support
Vector Machines (SVM) filter and were missing 10 %
or less data were extracted with VCFtools [6]. Sex-
averaged positions (cM) were linearly interpolated for
the WGS data using the GWAS markers as a frame-
work panel. We extracted exomes from WGS data
using the 1000genomes Phase3-like BED file (http://
www.1000genomes.org/category/exome).

Kinship estimation
We pruned WGS variants for LD in PLINK [7] (r2 ≤ 0.2),
applied filters described below, and pruned for LD with
SNPRelate [8] (r2 ≤ 0.1). The Agnostic design includes every
100th variant: 21,484 WGS variants. Agnostic variants are
rare: 58 % have founder MAF of 1 % or less. The Selective
design includes variants with MAF 5 % or greater: 64,389
WGS and 7215 exome variants. With an allele frequency
spectrum comparable to the Selective design, our Hom-
ogenizing design includes the 30,710 WGS variants with al-
ternate allele frequencies that minimally vary across the
African (AFR), Native American (AMR), Asian (ASN), and
European (EUR) populations [9] (maximum difference/
overall frequency ≤2). This is similar to an approach to re-
duce bias caused by population structure [10].

Within SNPRelate, we applied three estimators:
method of moments (MoM [7]), maximum likelihood
(MLE [1, 3]) for non-inbred pairs, and robust Kinship-
based INference for Genome-wide association studies
(KING [2]). No monomorphic single-nucleotide poly-
morphisms (SNPs) were evaluated and MAFs were
estimated from the sample. The fourth estimator, PC-
Relate [11], is a moment estimator that adjusts for
population structure using PCs, estimated here from
the GWAS data using PC-AiR [11] with the pedigree-
based kinship values. We report the weighted average
of chromosome-specific estimates, with negative
values set to zero. We evaluate how often each estima-
tor would assign pairs of subjects to their pedigree-
based relationship by rounding to the nearest expected
value of kinship for unrelated pairs, first-, second-,
third-, or fourth-degree relatives in an outbred pedi-
gree (represented by gold bars in Fig. 1).

Association testing and longitudinal analysis of systolic
blood pressure data—real data
We examined the role age may play on genetic effects
on SBP by fitting a linear mixed-effects model to the
longitudinal data for 916 individuals and 2189 SBP ob-
servations. Using the pedigree-based kinship matrix,
we estimated the additive variance as a function of
cubic splines of age, with log of the environmental
variance similarly fit. SBP was adjusted using fixed ef-
fects for medication use, smoking status and gender,
as well as smoking status and gender-specific curves
for age.
We performed a half-genome scan for association with

adjusted SBP at the first and third visits using Efficient
Mixed-Model Association eXpedited (EMMAX) [12].
EMMAX is a mixed-model approach that calculates and
uses an empirical genetic relatedness matrix (GRM) to ac-
count for both relatedness and population structure with
a variance component for additive polygenic effects. A
conservative Bonferroni correction for the association
tests is 1.05 × 10−7 (0.05/472,049 markers).
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Fig. 1 Box-plot comparison of pairwise kinship estimates from WGS vs. exome data. Blue, PLINK method of moments; cyan, PC-Relate; magenta,
KING-robust; red, maximum likelihood; Un, unrelated; WGS, whole genome sequence
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Association testing—simulated data
Admixture and association analysis of the simulated SBP
at the first visit, adjusted as described above, included 955
subjects with GWAS data. Local ancestry was estimated
by RFMix [4]. We phased the samples and imputed miss-
ing genotypes using Beagle3 [13] with 112 European (CEU
[Northern Europeans from Utah]), 147 Yoruban (YRI
[Yoruba in Ibadan, Nigeria]) and 63 Human Genome
Diversity Project (HGDP) Native American (AMR
[Admixed American]) samples [14, 15]. We included the
242,566 markers shared by GAW19 and reference panels.
Proportion of ancestry from reference populations is an
average of local ancestry values. Relatedness among sub-
jects was included as a kinship matrix, φ, estimated by
PC-Relate so as to adjust for the proportion of total ances-
try from each reference population. We fit a linear mixed
model at each marker, assuming the trait is Normally dis-
tributed with a mean equal to an intercept plus a main ef-
fect for ancestry and variance φσg + Iσe, where I is the
identity matrix. Ancestry for CEU, YRI, and AMR were
each fit separately. For admixture mapping, we use twice
the whole-genome-wide nominal p value of 7 × 10−6,
which has previously shown a type I error of 0.05 [16]. For
association mapping, we fit the same model using allelic
SNP dosage as the predictor and apply the same Bonfer-
roni threshold as for the analysis of real data, 1.05 × 10−7.

Population structure
We began with the WGS data for 102 unrelated subjects
from the GAW19 pedigrees. We created four subsets of
variants based upon their MAF: rare (MAF <0.01 or <0.05)
and common (MAF >0.01 or >0.05). There were 7,407,452
SNPs (MAF <0.05 = 5,803,244 SNPs; MAF <0.01 =
4,522,880 SNPs). We estimated R2, the coefficient of deter-
mination, from a linear regression model with 10 PCs from
a PC analysis (PCA) as predictors and CEU, AMR, and YRI
ancestry proportions from a supervised ADMIXTURE [17]
analysis as the response. Details on the supervised ADMIX-
TURE analysis are described elsewhere [18]. We performed
a PCA with a GRM, Ψ, with (i, j)th entry

ψij ¼

XS

s¼1

Gs
i−2p̂s

� �
Gs

j−2p̂s

� �� �

XS

s¼1

2p̂s 1−p̂sð Þ
ð1Þ

where S is the number of variants, Gi
s and Gi

s are the num-
ber of minor alleles (0, 1, or 2) that individuals i and jhave
at marker s, and ps is the MAF at marker s. Unlike the
EIGENSTRAT method [19], the entries in this GRM are
calculated using ratios of sums, so low-frequency variants
do not distort results.

Results
Kinship estimation
The MoM approach and Agnostic design provide the
least-reliable kinship estimates (see Fig. 1), whereas the
MLE values were consistently accurate. WGS and exome
data performed comparably within the Selective design,
whereas the Homogenizing design appeared to be more
precise. MLE, KING, and PC-Relate performed similarly
under the Homogenizing design. Excluding the Agnostic
approach, the MLE and PC-Relate were each able to cor-
rectly assign relationships for more than 90 % of pairs of
first- and second-degree relatives and unrelated subjects
(Table 1). Distant relationships cannot be reliably deter-
mined by any method.

Association testing and longitudinal analysis of systolic
blood pressure data—real data
Environmental variance generally increased as a function of
age, shown in the narrow-sense heritability estimates pre-
sented in Fig. 2. In those subjects who also had genotype
data (N = 831; 2060 SBP measurements), we found the her-
itability estimates were robust to kinship estimators (KING,
PC-Relate, and pedigree-based). The adjusted first- and
third-visit SBP values are quite different, with a correlation
of 0.48, and the heritability estimate from EMMAX for the
first-visit SBP is 0.26 and 0.13 for the third-visit SBP.

Table 1 Rate of successfully classified relationships. Frequency
pairs within each relationship are correctly assigned to this
degree of relationship

Degree of relationship

Design Estimator 1st 2nd 3rd 4th Unrelated

Agnostic WGS MLE 99.7 % 91.0 % 76.1 % 60.2 % 99.7 %

MoM 100 % 93.4 % 54.4 % 16.9 % 14.5 %

KING 98.9 % 65.2 % 30.5 % 14.9 % 100 %

PC-
Relate

99.7 % 94.1 % 81.9 % 57.9 % 93.9 %

Selective WGS MLE 99.7 % 92.7 % 76.3 % 61.3 % 99.9 %

MoM 100 % 97.4 % 78.4 % 38.1 % 58.0 %

KING 100 % 96.7 % 80.9 % 47.3 % 86.3 %

PC-
Relate

99.5 % 91.8 % 78.4 % 62.6 % 100 %

Selective exome MLE 99.7 % 93.2 % 80.2 % 62.6 % 99.2 %

MoM 99.7 % 96.5 % 71.6 % 33.0 % 43.4 %

KING 99.5 % 80.0 % 52.4 % 30.5 % 99.5 %

PC-
Relate

99.7 % 96.5 % 79.8 % 52.4 % 97.1 %

Homogenizing
WGS

MLE 99.5 % 91.0 % 74.2 % 57.3 % 100 %

MoM 99.5 % 96.3 % 79.6 % 44.9 % 61.7 %

KING 99.5 % 88.1 % 73.3 % 59.5 % 99.9 %

PC-
Relate

99.7 % 92.7 % 79.6 % 62.0 % 100 %
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The EMMAX approach found no significant associa-
tions with SBP at the first visit (Fig. 3a), but identified
several for the third visit (Fig. 3b). Although there was
some inflation of the test statistics for the third visit
(genomic control inflation factor, λ = 1.03), this was not
seen for the first visit (λ = 1.002). The string of extreme
p values in Fig. 3b could be caused by an outlier. We re-
peated EMMAX analyses without the subject with the
most extreme SBP at the third visit (Fig. 3c). Although λ
did not change much (λ = 1.034), the association signals
on chromosomes 1, 9, 11, and 13 were eliminated. The
remaining signal on chromosome (chr) three remained,
where the top SNP (rs7637973, in the LRRC31 gene) had
a p value of 5 × 10−10.

Association testing—simulated data
Admixture mapping had no power at the significance level
of 1.4 × 10−5. If we reduce the significance threshold to
5 × 10−4, we have 17 % power across 200 simulated repli-
cates to detect the variant in the P2RX5 gene on chr17
and 81 % power to detect the variant in the COL5A3 gene
on chr19. For association mapping, we observed 100 %
power across 200 replicates to detect the causal variant in
the MAP4 gene on chr3 at the significance level of 10−7.
Figure 4 shows the distribution of p values for each ap-
proach for the first simulated replicate.

Population structure
As shown in Table 2, the MAF of marker data influ-
enced our ability to capture population substructure.
PCA with rare variants captured the YRI structure sub-
stantially better than using common variants, whereas
common variants captured CEU/AMR ancestry better
than the rare variants. The boundary between common
and rare variation (1 % vs. 5 % MAF) had relatively
minor influence on results.

Discussion
We have shown that the frequency of alleles included
in kinship, association, and population structure esti-
mation have strong influences on their results. Kin-
ship estimation is most accurate when markers are
restricted to common variants that are not ancestry
informative, and the moment estimator showing the
least bias incorporated ancestry-informative PCs. Ad-
mixture mapping and association testing each identi-
fied different causal genes for the simulated adjusted
SBP, likely a consequence of differences in frequency
of risk alleles in the AMR and CEU reference popula-
tions. This warrants a future analysis evaluating a sin-
gle test of ancestry at each locus using a 2-degrees-
of-freedom test, as opposed to treating each ancestry
separately. When estimating population structure, the
marker data must be selected using the frequency of
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alleles in multiple relevant reference populations in
order to adequately capture the complexity of ances-
try in admixed populations.
Association testing found little evidence for real ad-

justed SBP loci, and the inflation of EMMAX results
with third-visit SBP was likely caused by the increase in
environmental variance in the trait as age increased,
consistent with the change in heritability estimates over
time. There could be shared environmental factors act-
ing on third-visit SBP that are not being modeled. This
would cause the systematic inflation of test statistics
across the genome.

Conclusions
Variants with imprecise allele frequencies bias estimates
of kinship, PCA, and association testing. Admixture

mapping and association testing proved complementary.
The influence of environment on estimates of heritabil-
ity and association appear to have been revealed by ana-
lysis of longitudinal data.
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