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Value of Mendelian Laws of Segregation in Families: Data Quality
Control, Imputation, and Beyond

Abstract
When analyzing family data, we dream of perfectly informative data, even whole-genome sequences (WGSs)
for all family members. Reality intervenes, and we find that next-generation sequencing (NGS) data have
errors and are often too expensive or impossible to collect on everyone. The Genetic Analysis Workshop 18
working groups on quality control and dropping WGSs through families using a genome-wide association
framework focused on finding, correcting, and using errors within the available sequence and family data,
developing methods to infer and analyze missing sequence data among relatives, and testing for linkage and
association with simulated blood pressure. We found that single-nucleotide polymorphisms, NGS data, and
imputed data are generally concordant but that errors are particularly likely at rare variants, for homozygous
genotypes, within regions with repeated sequences or structural variants, and within sequence data imputed
from unrelated individuals. Admixture complicated identification of cryptic relatedness, but information from
Mendelian transmission improved error detection and provided an estimate of the de novo mutation rate.
Computationally, fast rule-based imputation was accurate but could not cover as many loci or subjects as more
computationally demanding probability-based methods. Incorporating population-level data into pedigree-
based imputation methods improved results. Observed data outperformed imputed data in association
testing, but imputed data were also useful. We discuss the strengths and weaknesses of existing methods and
suggest possible future directions, such as improving communication between data collectors and data
analysts, establishing thresholds for and improving imputation quality, and incorporating error into
imputation and analytical models.
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ABSTRACT 

When analyzing family data, we dream of perfectly informative data, even whole genome 

sequences for all family members. Reality intervenes, and we find next-generation sequence 

(NGS) data has error, and is often too expensive or impossible to collect on everyone. Genetic 

Analysis Workshop 18 groups “Quality Control” and “Dropping WGS through families using 

GWAS framework” focused on finding, correcting, and using errors within the available 

sequence and family data, developing methods to infer and analyze missing sequence data 

among relatives, and testing for linkage and association with simulated blood pressure. 

We found that dense SNP, NGS, and imputed data are generally concordant, but that errors 

are particularly likely at rare variants, homozygous loci, within regions with repeated sequences 

or structural variants, and within sequence data imputed from non-relatives. Admixture 

complicated identification of cryptic relatedness, but information from Mendelian transmission 

improved error detection and provided an estimate of the de novo mutation rate. Both genotype 

and pedigree errors had an adverse effect on subsequent analyses. Computationally fast rules-

based imputation was accurate, but could not cover as many loci or subjects as more 

computationally demanding probability-based methods. Incorporating population-level 

information into pedigree-based imputation methods improved results. Observed data 

outperformed imputed data in association testing, but imputed data were also useful. 

We discuss the strengths and weaknesses of existing methods, and suggest possible future 

directions. Topics include improving communication between those performing data collection 

and analysis, establishing thresholds for and improving imputation quality, and incorporating 

error into imputation and analytical models.  

Keywords: Inference, type 1 error, power, next-generation sequence data, de novo mutation 
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INTRODUCTION 

Recent breakthroughs in next generation sequencing (NGS) technology are generating 

massive amounts of data on both rare and common variants. While the potential of this data 

deluge is staggering, so are the potential questions regarding analysis. To date, many 

methodological developments using NGS technologies either (a) assume that data are perfect and 

evaluate competing analytical techniques, or (b) focus entirely on data production and quality 

control, with little regard for the downstream implications regarding data processing. 

At Genetic Analysis Workshop 18 (GAW18), two working groups considered data quality 

issues. The quality control (QC) group focused primarily on evaluating and developing ways to 

assess the quality of sequence and pedigree data, while discussing the potential implications of 

the data quality issues identified. The gene-dropping group explored how the pedigree structure 

of the data lent itself to novel approaches to imputation and statistical tests for genotype-

phenotype relationships. By necessity, the gene-dropping group also discussed data quality and 

approaches to handling genotype and pedigree errors, as these errors can become particularly 

amplified by such approaches. After the workshop, the leaders of the groups decided it prudent 

to jointly summarize their findings to provide a more complete picture of approaches to assessing 

and solving data quality issues. We also evaluate the implications of these decisions regarding 

subsequent analyses where such mistakes can create potentially disastrous effects. 

For over three decades, as new genotyping technologies have been introduced, the statistical 

genetics community has repeatedly wrestled with a host of issues related to data quality. Initial 

error rates from each technology were high (e.g., for SNP microarrays see [Tintle et al., 2005]), 

with widespread implications including inflation of genetic map distances and biased estimates 

of the recombination fraction and linkage disequilibrium (LD) between loci [Buetow 1991; 
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Gordon and Finch 2005; Huang et al., 2004; Sobel et al., 2002]. Genotype errors can also inflate 

the type I error or reduce power of statistical analyses [Chang et al., 2006], depending on 

whether the errors are correlated with the phenotype [Gordon and Finch 2005]. Over time, data 

quality benefited from improvements in laboratory protocols, study design, genotype calling 

algorithms, and data screening approaches (e.g., departure from Hardy-Weinberg equilibrium or 

high rates of missing data)[Laurie et al., 2010; Pluzhnikov et al., 2010], among other, older, 

methods to identify problematic genotypes [Ehm et al., 1996; Gordon and Finch 2005; O'Connell 

and Weeks 1998]. 

Such work was not long forgotten with the advent of genotype imputation, which uses 

inferred pedigree-based or population-based haplotypes to predict unmeasured genetic variants 

(e.g., [Howie et al., 2009; Li et al., 2010]). The promise of “free” genotype data was and remains 

hugely appealing. However, genotype errors (this time produced exclusively in silico) are of 

concern in imputation, with the same issues of inflated type I errors and power loss [Beecham et 

al., 2010; Huang et al., 2009a; Huang et al., 2009b]. 

Now, with the advent of another sequencing technology, data quality issues are back in the 

spotlight with high error rates due to a variety of potential sources [Awadalla et al., 2010; Ilie et 

al., 2011; Nielsen et al., 2011]. Perhaps even more than for dense SNPs and imputation, the 

impact of these errors has the potential to be great. Rare variants are of profound biological 

importance, and are no longer ignored by data analysts. However, the high sequencing genotype 

error rate makes researchers ask, “Is that an error?” Preliminary assessment of gene-based tests 

of rare variant association show genotyping errors have strong effects on type I error and power 

[Garner 2009; Mayer-Jochimsen et al., 2013; Powers et al., 2011]. Renewed interest in family 

data, where rare variants may be easier to identify and associate with disease phenotypes, is 
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pushing the methodological and computational envelope. However, pedigree errors, as well as 

cryptic relatedness, often occur and also adversely affect downstream analyses. Application of 

imputation methods to sequence data in pedigrees, while potentially beneficial, can also 

dramatically magnify the adverse effects of initial sequencing errors. 

Here, we discuss a variety of approaches to evaluate errors in NGS and pedigree data, with 

their implications. We begin by discussing approaches to QC for NGS data in pedigrees and for 

pedigree structures in an effort to inform best practice for the processing and imputation of 

genotypes. When multi-generation families are available, as in GAW18, we discuss a method 

that exploits apparent Mendelian inheritance errors to estimate the de novo mutation rate without 

additional genotyping for validation. We then explore a variety of approaches for genotype 

imputation in pedigrees, and the confidence we can have in the results, which rely heavily on 

data quality. Lastly, we briefly explore some implications of genotype and pedigree errors as 

well as joint use of population and pedigree data when testing genotype-phenotype association. 

We conclude with a discussion of open questions and our final conclusions. 

ASSESSING DATA QUALITY 

We begin by focusing on approaches taken by papers to assess data quality. QC papers 

tended to focus either on potential sample errors in the pedigree structures provided by GAW18, 

or on genotype quality. We structure the following sections accordingly. 

Evaluating pedigree structure and cryptic relatedness 

It is now well accepted that, despite the best practice in data collection, sample errors can 

occur within pedigrees (e.g., sample swaps, non-paternity/maternity) or between pedigrees (e.g., 

cryptic relatedness, population structure). Such errors can result in increased type I error or 

decreased power. The individuals in the GAW18 data were part of 20 distinct multi-generational 
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pedigrees (see GAW18 data description paper in this volume for more details). In summary, the 

pedigree information was reported to have been validated by estimation of kinship coefficients, 

principal components analysis, and investigation into apparent Mendelian errors. However, no 

other details were provided.  Therefore, two papers evaluated potential sample errors remaining 

in the GAW18 data using the genotype data available for 959 individuals [Marchani et al., in 

press; Sun and Dimitromanolakis in press].  

Sun and Dimitromanolaki [in press] used a likelihood-based method that assumes a 

homogeneous population [McPeek and Sun 2000] implemented in PREST-plus [Sun and 

Dimitromanolakis 2012] to estimate identity-by-descent (IBD), along with a formal hypothesis 

test for relationship errors. Among all possible pairs of individuals within families, strong 

evidence for misspecified relationships were found for 7 pairs, and plausible alternatives 

compatible with the observed genotypes were proposed.  Sun and Dimitromanolaki [in press] 

also considered possible cryptic relatedness among the 147 purportedly unrelated individuals, 

and found four pairs with strong evidence for relatedness (half first-cousin to first-cousin). 

Marchani et al. [in press] similarly evaluated cryptic relatedness, but used King Robust 

[Manichaikul et al., 2010] and REAP [Thornton et al., 2012] to accommodate population 

admixture, which was present in this sample. After analyzing all pedigrees, they found evidence 

of cryptic relatedness greater than second cousins for pairs of relatives belonging to a total of 7 

families. These results were later confirmed by GAW18 organizers [John Blangero, personal 

communication]. When compared with the results of Sun and Dimitromanolaki [in press], the 

closest relationships were identified by both groups, but the two groups did not always identify 

the same cryptically related pairs. This illustrates the sensitivity of the conclusions to 
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incorporation of ancestry and admixture in the analysis model. 

Evaluating genotype quality 

Genotypes in the GAW18 data came from three distinct sources: direct NGS data, imputed 

NGS data using a novel population-based pipeline on 476 individuals (see data description paper 

in this volume), and GWAS data on approximately 550,000 common variants (population minor 

allele frequency, or MAF, >5%) on the entire sample. Genotype quality was evaluated by: (1) 

comparing genotypes of the same marker across platforms [Hinrichs et al., in press; Rogers et al., 

in press; Song et al., in press], (2) describing which errors are most common [Blackburn et al., in 

press; Pilipenko et al., in press; Rogers et al., in press] and (3) and evaluating when apparent 

genotyping errors are actually de novo mutations [Wang and Zhu in press].  

Three groups evaluated marker consistency across platforms. Song et al. [in press] examined 

a single chromosome and removed families with high levels of missing data from the analysis. 

They found 10.43% of genotypes to be discordant, of which 71.26% were mismatched 

genotypes, while 28.74% were missing within a data set. Two other papers analyzed all available 

data, and found reasonably high average concordance between NGS (direct or imputed) and 

GWAS genotypes: 97.6% [Hinrichs et al., in press] and 97.37% [Rogers et al., in press]. 

Concordance increased when only called genotypes were considered: 99.74% [Hinrichs et al., in 

press] and 99.77% [Rogers et al., in press]. The discordant genotypes are generally found at NGS 

sites with higher rates of missing data, and at imputed NGS sites in particular.  

Three papers further evaluated which types of variant sites were most likely to have 

discordant genotypes. Rogers et al. [in press] found that less common variants were more likely 

to be inconsistently genotyped. However, they only evaluated variants with MAF >5%, and so 

discordance rates among the truly rare variants are unknown. Rogers et al. [in press] also found 



8 
 

that heterozygote (GWAS) to non-reference allele homozygote (NGS) and reference allele 

homozygote (GWAS) to heterozygote (NGS) discrepancies were the most common, accounting 

for over 80% of all discordance among called genotypes. This suggests that imputation of minor 

alleles may be occurring more often than it should. Lastly, Pilipenko et al. [in press] used the 

pedigree structure and sequence data to examine the distribution of Mendelian Inheritance Errors 

(MIEs) across chromosome 3 and identify their characteristics. They found that MIEs tended to 

cluster near repetitive sequence locations. This corresponded to the findings of Blackburn et al. 

[in press] who found that inconsistencies between their own imputed genotypes (see below) and 

measured genotypes tended to occur in regions with structural variants (e.g., copy number 

variants). Pilipenko et al. [in press] also concluded that, among the various QC parameters 

provided in the sequencing file, an SVM threshold >3.5 was the most effective at reducing MIEs.  

While most QC work considered errors as a nuisance, Wang et al. [in press] took the view 

that not all errors are bad and developed a novel approach utilizing the apparent MIEs and the 

three-generation family data to accurately estimate the de novo mutation rate. In particular, MIEs 

identified in the first two generations were de novo mutation candidates, among which the true 

de novo mutations should be transmitted to the third generation following Mendelian laws. Using 

this approach, a de novo mutation rate of 1.64x10
-8

 per position was obtained. This is consistent 

with estimates obtained using more costly validation study designs requiring additional 

genotyping. The work of Wang et al. [in press] also showed that over 95% of the de novo 

mutation candidates were, in fact, genotyping errors.    

IMPUTATION APPROACHES 

Pedigree data provides powerful information for identifying genetic regions influencing 

traits, learning about de novo mutations, and detecting recombination hot spots. It is also an 
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investment, often taking years to collect samples for larger pedigrees. Researchers who have 

invested in genome-scan genotyping in their pedigrees may be tempted to couple that data with 

Mendel’s laws of inheritance to impute NGS data collected on a subset of pedigree members into 

their relatives. Here, we summarize different strategies for imputing missing genotype data 

through pedigrees using strict rules (heuristic) or probabilistic methods. All methods used two 

sets of marker data: a sparser framework panel (often GWAS) observed in most relatives, and a 

rich, denser marker panel (often NGS) observed in a subset of those relatives. Pedigree 

relationships and framework genotypes, both assumed to be correct, are used to estimate IBD 

sharing among relatives, which are then used to impute rich marker genotypes in relatives with 

missing data.  

Heuristic methods 

Imputation of genotypes in large families, or those with distant relationships and missing 

data, is not well supported by existing tools, such as Merlin [Abecasis et al., 2002] and Mendel 

[Chen et al., 2012]. Two groups developed heuristic imputation methods, which perform these 

tasks accurately and expediently for a subset of markers and subjects. The heuristic methods only 

assign alleles where the inferred IBD information in a pedigree coupled with the observed 

marker data forces the allelic states at a marker and the phase between markers. 

Blackburn et al. [in press] required true pedigree structure and that framework markers are 

observed for all relatives included in the analysis. They used Mendel’s laws on trios in the 

pedigrees to phase founder parent haplotypes for the framework markers, and then knitted the 

trios together using a minimum recombination model [Qian and Beckmann 2002]. The rich 

marker panel was then phased using trio information, with the haploid genotypes mapped to each 
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of a founder’s phased haplotypes. The inheritance patterns of founder framework haplotypes 

were then used to impute genotypes into relatives missing rich genotypes.  

Song et al. [in press] applied PedIBD [Li and Li 2011], which also assumes true pedigree 

structure but tolerates missing data in relatives. This method considers pairs of individuals, with 

further constraints imposed when all sets of these pairs are considered. They used GWAS 

framework data to identify recombination break points, and then inferred phased haplotypes 

between them. Some individuals without framework marker data may still be assigned phased 

haplotypes because they are obligate carriers (e.g., a parent with missing data and observed 

offspring), but as observed by Blackburn et al. [in press], allelic states for missing genotypes 

cannot be propagated indefinitely into parts of a pedigree lacking framework marker data. 

To measure accuracy, Blackburn et al. [in press] divided the GWAS data into framework and 

a rich marker panels. Half of the genotypes in the rich panel were “masked”, or treated as 

missing, and imputed. Average imputation accuracy was measured by the IQS statistic [Lin et 

al., 2010], which adjusts for chance concordance between masked and imputed genotypes, and 

MAF. The IQS statistic averaged 0.992 for the 211,736 markers with chance concordance <1. 

Although imputation was generally accurate, imputation of rare variants was less reliable (IQS = 

0.972 at MAF ≤ 0.01) than for common variants (IQS = 0.994 at MAF >0.4).  

Song et al. [in press] examined the accuracy of their imputation method by masking NGS 

data for 5 subjects from Family 21, each with multiple relatives with GWAS and NGS data. 

Accuracy ranged from 91.40% to 99.44%, with no clear relationship with the number of 

sequenced first- or second-degree relatives. Instead, NGS data quality in relatives appears to 

have a stronger influence on the accuracy of imputed data. Song et al. [in press] were able to 
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impute 82.9% of the NGS variants for 1,011 individuals (198 of whom without GWAS or NGS 

data), with nearly 90% of the uncalled variants causing Mendelian errors if called.  

Although the heuristic imputation groups shared neither the same data nor the same statistics, 

a few common lessons are revealed. Heuristic methods did not incorporate population-level 

information when phasing haplotypes, such as MAF or LD. This may be considered an 

advantage when the pedigrees of interest do not clearly belong to a single reference population, 

such as in GAW18 where there is population stratification within a sample of admixed pedigrees. 

Both groups identified recombination points by looking for “switches” where an individual’s 

haplotype changed between marker loci, and avoided imputing genotypes in such regions. 

Combined with the strict rules within their heuristic approaches, this means that their methods 

are very accurate, but some loci near recombination points will not be imputable, nor will 

information impute into individuals with ambiguous IBD information. 

Probabilistic methods 

Marchani et al. [in press] used a pedigree-based imputation approach that allows for 

imperfect IBD information. This probabilistic approach includes the rules behind the heuristic 

approaches, but incorporates additional information with computations that are consequently 

more demanding. The imputation program, GIGI [Cheung et al., 2013], uses Markov Chain 

Monte Carlo realizations of inheritance vectors 

[http://www.stat.washington.edu/thompson/Genepi/Pangaea.shtml], conditional on sparse 

genotype markers in linkage equilibrium, pedigree structure, allele frequencies, and meiotic 

marker map positions. These inheritance vectors are combined with the observed rich and 

framework marker data and allele frequencies to estimate genotype probabilities for each rich 

marker for each subject missing data. This provides the opportunity to estimate probable 
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genotypes in the face of greater uncertainty, such as near recombination break points or in 

unsampled individuals. Accuracy was measured as percent agreement between the imputed and 

observed GWAS data available in masked individuals. Marchani et al. [in press] compared and 

integrated GIGI with population-based imputation implemented in BEAGLE [Browning and 

Browning 2009].  BEAGLE uses a reference panel of genotypes from unrelated individuals and 

population-level LD to impute rich marker data for a set of unrelated individuals with framework 

marker data available. 

Marchani et al. [in press] imputed chromosome 3 GWAS data for pedigree 10, using 

founders from several pedigrees as a reference panel for population-based imputation. Strategies 

to select whose rich data to observe and whose to impute were influential. Although GIGI 

(99.8% -98.1%) and BEAGLE (99.1%-97.8%) were both very accurate regardless of the amount 

of masked rich marker data, they were less likely to impute genotypes when less rich data was 

available. Accuracy at rare variants (MAF<0.05) was at least 99% for both GIGI and BEAGLE 

under both conditions. Interestingly, combining results from GIGI and BEAGLE using a few 

simple rules resulted in overall gains in call rates and accuracy comparable to those resulting 

from an increase in the amount of observed marker data.  

Probabilistic imputation strategies offered promise, as they are able to impute data into more 

missing individuals across more loci than purely heuristic approaches [Blackburn et al., in press; 

Marchani et al., in press; Song et al., in press]. However, they come with a computational price: 

hours, instead of minutes, of computational time [Blackburn et al., in press; Marchani et al., in 

press], if inheritance vectors have not yet been sampled. Genotype imputation within pedigrees 

can improve with the incorporation of population-level data [Marchani et al., in press], but 

caution must be taken to ensure that Markov chains are reducible and the entire sample space of 
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inheritance vectors is represented. There was a reduction in call rate, and therefore the 

underlying probability of an imputed genotype, when pedigree members are absent from the 

population reference panel, and when less rich data is available within a pedigree [Marchani et 

al., in press]. The direct effect of this on accuracy relative to other pedigree-based imputation 

approaches is difficult to determine, as some papers chose not to impute uncertain calls, while 

others always imputed genotypes regardless of their probability. Rare alleles are often imputed 

with reduced accuracy and/or call rate by both heuristic and probabilistic approaches, although 

Marchani et al. [in press] found that rare alleles were more successfully imputed by a pedigree-

based, rather than a population-based method.  

GENOTYPE-PHENOTYPE ASSOCIATION TESTING 

Many groups at GAW18 performed association testing, including family-based tests, and 

readers interested in this area should also examine the other group summary papers in this 

volume. However, association testing was also explored in the gene-dropping group, through the 

application of a new score test [Jiang et al., in press] and evaluation of the use of imputed data 

for analysis [Marchani et al.,et al., in press]. The implementation of the methods in both of these 

groups was based on the same MCMC-based approach and program to sample of inheritance 

vectors from complete pedigrees. Both groups also analyzed the simulated diastolic blood 

pressure values (SBP) from the first simulated data set, and analyzed only chromosome 3 GWAS 

data. Their quality control measures and choice of covariate adjustments varied, along with their 

choice of pedigrees for analysis, precluding direct comparison of the analysis results between the 

groups. However, both groups concluded that inclusion of pedigree data led to stronger p-values 

at the loci with most influence on SBP. 
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Marchani et al. [in press] compared mixed-model variance components association testing 

using a kinship matrix based on the known pedigree structure vs. estimated from all GWAS data 

in the absence of known pedigree structure. Although their analysis focused only on the top hits 

from another half-genome scan [Thornton et al., in press], results were consistent across loci: 

both forms of analysis identified significant associations around the simulated true loci, but the 

pedigree-based kinship matrix provided a stronger signal at the true causal locus than did the 

estimated kinship matrix.  In light of the findings of Hainline et al. [in press], who found that 

pedigree-based kinship matrices resulted in an overly-conservative type I error relative to the 

estimated kinship matrices, pedigree-based kinship matrices may provide a stronger boost to 

power than initially suspected. However, Hainline et al. [in press] focused on rare variants, 

analyzed a binary phenotype, and used a different approach to estimate kinship matrices. 

Intuition suggests, at least for single-marker tests at common variants, if the true relationship is 

closer than what is specified by the given pedigree, then there may be an increased type I error, 

while if the true relationship is more distant than the given, then power may be reduced. When 

there is a mixture of both types of misspecification, effects are less predictable. This is an area 

that deserves further research. 

Marchani et al. [in press] also compared association testing results using different amounts of 

imputed, rather than observed, GWAS data. Observed GWAS data provided a slightly stronger 

association signal than the imputed data, even when the imputed data was highly accurate. The 

ranked order of some variants also changed with the inclusion of imputed data. However, 

because the difference between the p-values was generally small, this does suggest that use of 

imputed data is useful when directly observed data are unavailable. 
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Jiang et al. [in press] introduced a novel gene-dropping score statistic that also uses sampled 

inheritance vectors from complete pedigrees, and also incorporates association information. They 

compared results with traditional family-based association testing FBAT [Rabinowitz and Laird 

2000], which restricts the pedigree sizes, with an association analysis using only unrelated 

founders, and with their joint test. They found that conditioning their score test on inheritance 

vector information provided results comparable to the unconditional test. The most influential 

SBP variants on chromosome 3 were ranked as more significant by the score statistic with joint 

inheritance and association information than by either the association test alone or the FBAT 

test. There was very little correlation between p-values across the types of tests. This may be the 

result of the relatively weak contribution of the loci to the simulated trait: weaker associations 

are more vulnerable to noise in the data, and so their p-values may fluctuate more. Each 

association test compared also used different sources of data:  association testing used only 

unrelated individuals, FBAT divided large pedigrees into smaller families, and the score test 

used the entire pedigree structure as well as both the linkage and association information. The 

results from this comparison suggest that joint testing for linkage and association between 

genetic and phenotypic variability maximizes the amount of data used. 

Jiang et al. [in press] attempted to accommodate population stratification in this sample by 

including the first two principal components of genetic variation as covariates, but found only 

modest changes in p-values. This is consistent with the findings from the GAW18 Admixture 

group: the inclusion of the first few principal components as covariates are not sufficient for 

capturing the level of population stratification in this sample [Thornton et al., in press]. 

Both papers found minimal evidence for linkage to chromosome 3 for simulated blood 

pressure, using either parametric or variance components lod scores [Marchani et al., in press], 
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and the linkage component of the gene-dropping score test [Jiang et al., in press]. Personal 

communication with John Blangero at GAW18 revealed that phenotypic variation within the first 

simulated phenotype data set did not co-segregate well with genetic variation.  

DISCUSSION  

The analysis of rare variants, often the motivation for NGS data collection, is complicated by 

genotyping errors. Results from GAW18 raised several important points regarding the detection, 

and correction, of genotyping errors in this context. The discrepancy rate between GWAS SNPs 

and directly sequenced NGS SNPs was higher than an earlier comparison of genotype 

discrepancy rates between SNP-array platforms [Hinrichs and Suarez 2005]. The higher error 

rate of NGS data, and the difficulty finding the errors through standard pedigree-based methods 

[Hinrichs and Suarez 2005], suggests it may be useful to develop better tools to detect 

genotyping error during QC, or to incorporate errors into downstream analytical models, such as 

the detection of truly de novo variants. However, because the pattern of discrepancies between 

the NGS and GWAS genotype data is different than in earlier studies of SNP discrepancies, 

genotyping error models may need to be more sophisticated than the simple error models that 

have previously been used [Douglas et al., 2002; Epstein et al., 2000]. For example, error models 

may benefit from incorporation of observed differences in error rates as a function of genomic 

signatures, such as presence of structural variation. 

There is also a need to jointly consider genotype and sample errors. Traditionally, the two 

categories of errors are evaluated separately, and each category is assessed with the assumption 

that the other type of error is absent. Intuitively, a small percentage of genotype errors should not 

alter the sample inference based on the whole genome, with the exception of monozygotic twins, 

which can be missed in the absence of a model that does not allow discordant genotypes [Epstein 
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et al., 2000]. Similarly, a small proportion of sample errors should not change genotype error 

conclusions based on the whole sample. However, it is not clear if sample QC followed by 

genotype QC leads to the same data for downstream analysis as does genotype QC followed by 

sample QC. Even within each category of error, there is a need to investigate the impact of 

different QC steps in a sequential approach and the utility of a joint analysis. 

Error detection in families sampled from structured populations has its own challenges. Sun 

and Dimitromanolaki [in press] demonstrated that likelihood-based approach implemented in 

PREST-plus is more powerful than the method-of-moments implemented in PLINK [Purcell et 

al., 2007].  Marchani et al. [in press] showed that modeling admixture is important when the 

assumption that the individuals are all from the same homogeneous population might be violated. 

Ignoring population structure, such as variable amounts of admixture among individuals, can 

lead to spurious detection of weakly related individuals. Such individuals can simply share 

similar ancestry, not necessarily relatively close relatives. These differences in model 

assumptions probably account for why the two papers did not find the same pairs of cryptically-

related families, other than one pair where the relationships across pedigrees were quite strong. 

In addition to the errors caused by NGS data generation, the imputation of missing sequence 

data can introduce additional genotyping error. The combination of population-based and small-

pedigree pedigree imputation methods used to provide the GAW18 imputed sequence yielded a 

disappointingly high inflation in the error rate relative to the directly sequence data. The large-

pedigree based imputation methods proposed by several participants gave much more accurate 

results, illustrating that better methods exist that more appropriately make use of the existing 

data structures, and should be used for this purpose in the future. Future improvements to these 

methods could include more sophisticated combinations of population-level LD with pedigree-
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based transmission. GAW18 results suggest that the information in these two sources is nearly 

independent for the purposes of genotype imputation, leading to potentially large gains in both 

quantity and quality of imputed genotypes that might be realized in the future. 

GAW18 results, as well as earlier studies, show that use of imputed genotypes for 

downstream analysis is less desirable than use of directly measured genotypes. A small 

genotyping error rate can translate into a loss in power, or conversely, a reduced statistical signal, 

given a fixed sample size. However, because of sample availability and cost, imputation in 

studies of large pedigrees will still often be useful when NGS technologies are used. It would be 

useful to develop measures of the change in power, expected value of a test statistic, or sample 

size required as a function of imputation accuracy in pedigrees. It is possible that for association 

testing in a family-based setting, the relationship between the accuracy and required sample size 

may be similar to the familiar relationship known in the use of tag-SNPs for association testing: 

N/r
2
 [Spencer et al., 2009], where r

2
 is the squared correlation between the imputed and true 

haplotypes, and N is the required sample size in the absence of error. In other analytical settings, 

a different relationship may be more pertinent. It also would be useful to evaluate different 

approaches to capture and use the imputed genotypes for analysis, such as whether to use a 

single called most-likely genotype, an average “dose” across possible genotypes, or multiple 

imputations based on repeated analysis with a sampling of possible genotypes. Previously 

developed principles for the use of imputed data should also hold [Little 1992; Rubin 1996]. 

Although combining pedigree-based inheritance vectors and population LD information can 

be challenging, GAW18 participants found it also can be beneficial. Both of the papers that 

combined these sources of information reported gains: in the strength of a test of linkage and 

association [Jiang et al., in press], and in the fraction of genotypes that could be imputed at a 
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given accuracy level [Marchani et al., in press]. Both groups allowed the inheritance vectors and 

LD information to be obtained separately, and then combined. This is easier than constructing 

methods that accurately determine or sample inheritance vectors in the presence of tightly-linked 

markers in LD, and also provides some information about the relative importance of segregating 

variation in the pedigrees vs. population association in a given situation. It also allows each part 

of the analysis to be carried out using optimal marker spacing for that component, thereby 

increasing computational efficiency without losing power or accuracy: using moderately-spaced 

markers for estimation of inheritance vectors [Wilcox et al., 2005], and densely-space markers 

for capturing population-level association [Browning and Browning 2009].  

It is not surprising that we found QC and subsequent analysis to be intertwined at GAW18. 

However, NGS data presents a new challenge, as “raw” NGS data has in fact undergone 

considerable pre-processing. Those protocols were not described here, and are often not 

sufficiently described to understand their potential sources of error. Such errors or biases 

incurred during data generation nevertheless will be transmitted within the data. 

Bioinformaticists, statistical geneticists, and others who implement these methods are already 

tackling multiple aspects of the challenges inherent to NGS data, sometimes in a redundant 

fashion. In order to further develop the QC and gene-dropping analyses summarized here, better 

communication across all stages of data analysis will be necessary.  
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