87 research outputs found

    Redefining Stewardship over Body Parts

    Get PDF
    This paper proposes one possible avenue for defining a framework to address body parts. I begin with the presumption that given the increasing use of body parts outside of our bodies, either after death or during life, society requires a framework with institutions and rules to govern our body parts. Yet there is no settled framework. Much of the controversy over differing approaches stems from whether people should be able to sell body parts. Thus, each potential framework implicitly addresses the question of monetary value. While multiple possibilities exist, the predominant models are (1) property, most often meaning ownership that permits monetary compensation; (2) stewardship, implying altruism and no monetary compensation to the donor; and (3) a compromise solution involving regulatory bodies, which could assign monetary value under certain circumstances

    Mary Breckinridge Meets Healthy People 2010: A Teaching Strategy for Visioning and Building Healthy Communities

    Get PDF
    Abstract: In both midwifery and nursing education, it is essential to include innovative teaching strategies that address the health of communities. This article presents a creative learning activity for midwifery and/or nursing education that integrates Mary Breckinridge's historical example with today's national goals for building communities. The establishment of the Frontier Nursing Service in 1925 is an excellent example of the Mobilize, Assess, Plan, Implement, and Track (MAP-IT) framework for building health communities. Advanced practice nursing and midwifery students can use this historical template to implement their ideas for building healthy communities today

    Post-traumatic stress disorder following childbirth: an update of current issues and recommendations for future research

    Get PDF
    Objective: This paper aimed to report the current status of research in the field of post-traumatic stress disorder following childbirth (PTSD FC), and to update the findings of an earlier 2008 paper. Background: A group of international researchers, clinicians and service users met in 2006 to establish the state of clinical and academic knowledge relating to PTSD FC. A paper identified four key areas of research knowledge at that time. Methods: Fourteen clinicians and researchers met in Oxford, UK to update the previously published paper relating to PTSD FC. The first part of the meeting focused on updating the four key areas identified previously, and the second part on discussing new and emerging areas of research within the field. Results: A number of advances have been made in research within the area of PTSD FC. Prevalence is well established within mothers, several intervention studies have been published, and there is growing interest in new areas: staff and pathways; prevention and early intervention; impact on families and children; special populations; and post-traumatic growth. Conclusion: Despite progress, significant gaps remain within the PTSD FC knowledge base. Further research continues to be needed across all areas identified in 2006, and five areas were identified which can be seen as ‘new and emerging’. All of these new areas require further extensive research. Relatively little is still known about PTSD FC

    Dominant-negative variant in SLC1A4 causes an autosomal dominant epilepsy syndrome.

    Get PDF
    SLC1A4 is a trimeric neutral amino acid transporter essential for shuttling L-serine from astrocytes into neurons. Individuals with biallelic variants in SLC1A4 are known to have spastic tetraplegia, thin corpus callosum, and progressive microcephaly (SPATCCM) syndrome, but individuals with heterozygous variants are not thought to have disease. We identify an 8-year-old patient with global developmental delay, spasticity, epilepsy, and microcephaly who has a de novo heterozygous three amino acid duplication in SLC1A4 (L86_M88dup). We demonstrate that L86_M88dup causes a dominant-negative N-glycosylation defect of SLC1A4, which in turn reduces the plasma membrane localization of SLC1A4 and the transport rate of SLC1A4 for L-serine

    Surviving Mousepox Infection Requires the Complement System

    Get PDF
    Poxviruses subvert the host immune response by producing immunomodulatory proteins, including a complement regulatory protein. Ectromelia virus provides a mouse model for smallpox where the virus and the host's immune response have co-evolved. Using this model, our study investigated the role of the complement system during a poxvirus infection. By multiple inoculation routes, ectromelia virus caused increased mortality by 7 to 10 days post-infection in C57BL/6 mice that lack C3, the central component of the complement cascade. In C3−/− mice, ectromelia virus disseminated earlier to target organs and generated higher peak titers compared to the congenic controls. Also, increased hepatic inflammation and necrosis correlated with these higher tissue titers and likely contributed to the morbidity in the C3−/− mice. In vitro, the complement system in naïve C57BL/6 mouse sera neutralized ectromelia virus, primarily through the recognition of the virion by natural antibody and activation of the classical and alternative pathways. Sera deficient in classical or alternative pathway components or antibody had reduced ability to neutralize viral particles, which likely contributed to increased viral dissemination and disease severity in vivo. The increased mortality of C4−/− or Factor B−/− mice also indicates that these two pathways of complement activation are required for survival. In summary, the complement system acts in the first few minutes, hours, and days to control this poxviral infection until the adaptive immune response can react, and loss of this system results in lethal infection

    Common Genetic Variants Contribute to Risk of Transposition of the Great Arteries.

    Get PDF
    RATIONALE: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored. OBJECTIVE: We sought to study the role of common single nucleotide polymorphisms (SNPs) in risk for D-TGA. METHODS AND RESULTS: We conducted a genome-wide association study in an international set of 1,237 patients with D-TGA and identified a genome-wide significant susceptibility locus on chromosome 3p14.3, which was subsequently replicated in an independent case-control set (rs56219800, meta-analysis P=8.6x10 CONCLUSIONS: This work provides support for a polygenic architecture in D-TGA and identifies a susceptibility locus on chromosome 3p14.3 nea

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties
    corecore