450 research outputs found

    Design of urban forests

    Get PDF
    This chapter explores the design of the urban forest. Whether the various elements are new to the urban green-space structure, or whether they are existing components which require changes in layout or management due to evolving demands, design has an important part to play. The spatial layout of trees, their composition and structure, interact with the ways people perceive or make use of them and also affect physical and ecological functioning such as shelter, shade and habitat provisioninfo:eu-repo/semantics/publishedVersio

    Social system of transition society theoretical scheme: economy, culture and ecology interrelations

    Get PDF
    Changes in transcription factor levels, epigenetic status, splicing kinetics and mRNA degradation can each contribute to changes in the mRNA dynamics of a gene. We present a novel method to identify which of these processes is changed in cells in response to external signals or as a result of a diseased state. The method employs a mathematical model, for which the kinetics of gene regulation, splicing, elongation and mRNA degradation were estimated from experimental data of transcriptional dynamics. The time-dependent dynamics of several species of adipose differentiation-related protein (ADRP) mRNA were measured in response to ligand activation of the transcription factor peroxisome proliferator-activated receptor δ (PPARδ). We validated the method by monitoring the mRNA dynamics upon gene activation in the presence of a splicing inhibitor. Our mathematical model correctly identifies splicing as the inhibitor target, despite the noise in the data

    Multiscale investigation of adsorption properties of novel 3D printed UTSA-16 structures

    Get PDF
    Structuring MOF materials is a fundamental step towards their commercialization. Herein we report intensive characterization of 3D-printed UTSA-16 monoliths, facilitated by the development of a new non-aqueous ink formulation, employing hydroxypropyl cellulose and boehmite to adjust the rheology of the ink. What makes this formulation and printing process different from the printed adsorbents and catalysts published previously, is that the resulting structures in this work were not sintered. The presence of the binder matrix not only produced the physical properties for printability but also ensured a homogeneous dispersion of UTSA-16 in the structures, as well as gas adsorption characteristics. The monoliths were tested for the adsorption of different gases (N2, CH4, CO2 and H2O) in order to apply them into separation processes that contribute to defossilizing energy and fuels production. Water is strongly adsorbed in this material (~14 mol/kg at 293 K) and is competing with CO2 for adsorption sites. Breakthrough curves showed that the retention time of CO2 decreases significantly when the feed stream is saturated with water. In this study, synchrotron XRD-CT data were collected in situ, in a non-destructive way, and phase distribution maps were reconstructed to, for the first time, gain insight into the spatial and temporal evolution of the UTSA-16 containing phases in the operating 3D printed monolith during the exposure to CO2.publishedVersio

    Host tropism determination by convergent evolution of immunological evasion in the Lyme disease system

    Get PDF
    Pathogens possess the ability to adapt and survive in some host species but not in others-an ecological trait known as host tropism. Transmitted through ticks and carried mainly by mammals and birds, the Lyme disease (LD) bacterium is a well-suited model to study such tropism. Three main causative agents of LD, Borrelia burgdorferi, B. afzelii, and B. garinii, vary in host ranges through mechanisms eluding characterization. By feeding ticks infected with different Borrelia species, utilizing feeding chambers and live mice and quail, we found species-level differences in bacterial transmission. These differences localize on the tick blood meal, and specifically complement, a defense in vertebrate blood, and a polymorphic bacterial protein, CspA, which inactivates complement by binding to a host complement inhibitor, Factor H (FH). CspA selectively confers bacterial transmission to vertebrates that produce FH capable of allele-specific recognition. CspA is the only member of the Pfam54 gene family to exhibit host-specific FH-binding. Phylogenetic analyses revealed convergent evolution as the driver of such uniqueness, and that FH-binding likely emerged during the last glacial maximum. Our results identify a determinant of host tropism in Lyme disease infection, thus defining an evolutionary mechanism that shapes host-pathogen associations

    Host tropism determination by convergent evolution of immunological evasion in the Lyme disease system [preprint]

    Get PDF
    Microparasites selectively adapt in some hosts, known as host tropism. Transmitted through ticks and carried mainly by mammals and birds, the Lyme disease (LD) bacterium is a well-suited model to study such tropism. LD bacteria species vary in host ranges through mechanisms eluding characterization. By feeding ticks infected with different LD bacteria species, utilizing feeding chambers and live mice and quail, we found species-level differences of bacterial transmission. These differences localize on the tick blood meal, and complement, a defense in vertebrate blood, and a bacterial polymorphic protein, CspA, which inactivates complement by binding to a host complement inhibitor, FH. CspA selectively confers bacterial transmission to vertebrates that produce FH capable of allele-specific recognition. Phylogenetic analyses revealed convergent evolution as the driver of such findings, which likely emerged during the last glacial maximum. Our results identify LD bacterial determinants of host tropism, defining an evolutionary mechanism that shapes host-microparasite associations

    GEOCON BRIDGE: Geopolymer Concrete Mixture for Structural Applications

    Get PDF
    The sustainability of infrastructure projects is becoming increasingly important issue in engineering practice. This means that in the future the construction materials will be selected on the basis of the contribution they can make to reach sustainability requirements. Geopolymers are materials based on by-products from industries. By using geopolymer concrete technology it is possible to reduce our waste and to produce concrete in the environmental-friendly way. An 80% or greater reduction of greenhouse gases compared with Ordinary Portland Cement (OPC) can be achieved through geopolymer technology. However, there are limited practical applications and experience. For a broad and large scale industrial application of geopolymer concrete, challenges still exist in the technological and engineering aspects. The main goal of GeoCon Bridge project was to develop a geopolymer concrete mixture and to upscale it to structural application. The outputs of projects provide input for development of recommendations for structural design of geopolymer based reinforced concrete elements. Through a combination of laboratory experiments on material and structural elements, structural design and finite element simulations, and based on previous experience with OPC concrete, knowledge generated in this project provides an important step towards a “cement free” construction. The project was performed jointly by three team members: Microlab and Group of Concrete Structures from Technical University of Delft and Technical University of Eindhoven
    corecore