21 research outputs found

    Early Functional Impairment of Sensory-Motor Connectivity in a Mouse Model of Spinal Muscular Atrophy

    No full text
    To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. Deafferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention

    Early Functional Impairment of Sensory-Motor Connectivity in a Mouse Model of Spinal Muscular Atrophy

    No full text
    To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. Deafferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention

    Identification of multisegmental nociceptive afferents that modulate locomotor circuits in the neonatal mouse spinal cord

    No full text
    Compared to proprioceptive afferent collateral projections, less is known about the anatomical, neurochemical, and functional basis of nociceptive collateral projections modulating lumbar central pattern generators (CPG). Quick response times are critical to ensure rapid escape from aversive stimuli. Furthermore, sensitization of nociceptive afferent pathways can contribute to a pathological activation of motor circuits. We investigated the extent and role of collaterals of capsaicin-sensitive nociceptive sacrocaudal afferent (nSCA) nerves that directly ascend several spinal segments in Lissauer's tract and the dorsal column and regulate motor activity. Anterograde tracing demonstrated direct multisegmental projections of the sacral dorsal root 4 (S4) afferent collaterals in Lissauer's tract and in the dorsal column. Subsets of the traced S4 afferent collaterals expressed transient receptor potential vanilloid 1 (TRPV1), which transduces a nociceptive response to capsaicin. Electrophysiological data revealed that S4 dorsal root stimulation could evoke regular rhythmic bursting activity, and our data suggested that capsaicin-sensitive collaterals contribute to CPG activation across multiple segments. Capsaicin's effect on S4-evoked locomotor activity was potent until the lumbar 5 (L5) segments, and diminished in rostral segments. Using calcium imaging we found elevated calcium transients within Lissauer's tract and dorsal column at L5 segments when compared to the calcium transients only within the dorsal column at the lumbar 2 (L2) segments, which were desensitized by capsaicin. We conclude that lumbar locomotor networks in the neonatal mouse spinal cord are targets for modulation by direct multisegmental nSCA, subsets of which express TRPV1 in Lissauer's tract and the dorsal column. J. Comp. Neurol. 521:2870-2887, 2013. © 2013 Wiley Periodicals, Inc
    corecore