80 research outputs found

    Estimating smallholder crops production at village level from Sentinel-2 time series in Mali's cotton belt

    Get PDF
    In Mali's cotton belt, spatial variability in management practices, soil fertility and rainfall strongly impact crop productivity and the livelihoods of smallholder farmers. To identify crop growth conditions and hence improve food security, accurate assessment of local crop production is key. However, production estimates in heterogeneous smallholder farming systems often rely on labor-intensive surveys that are not easily scalable, nor exhaustive. Recent advances in high-resolution earth observation (EO) open up new possibilities to work in heterogeneous smallholder systems. This paper develops a method to estimate individual crop production at farm-to-community scales using high-resolution Sentinel-2 time series and ground data in the commune of Koningue, Mali. Our estimation of agricultural production relies on (i) a supervised, pixel-based crop type classification inside an existing cropland mask, (ii) a comparison of yield estimators based on spectral indices and derived leaf area index (LAI), and (iii) a Monte Carlo approach combining the resulting unbiased crop area estimate and the uncertainty on the associated yield estimate. Results show that crop types can be mapped from Sentinel-2 data with 80% overall accuracy (OA), with best performances observed for cotton (Fscore 94%), maize (88%) and millet (83%), while peanut (71%) and sorghum (46%) achieve less. Incorporation of parcel limits extracted from very high-resolution imagery is shown to increase OA to 85%. Obtained through inverse radiative transfer modeling, Sen2-Agri estimates of LAI achieve better prediction of final grain yield than various vegetation indices, reaching R2 of 0.68, 0.62, 0.8 and 0.48 for cotton, maize, millet and sorghum respectively. The uncertainty of Monte Carlo production estimates does not exceed 0.3% of the total production for each crop type

    The Sizes of the X-ray and Optical Emission Regions of RXJ1131-1231

    Full text link
    We use gravitational microlensing of the four images of the z=0.658 quasar RXJ1131-1231 to measure the sizes of the optical and X-ray emission regions of the quasar. The (face-on) scale length of the optical disk at rest frame 400 nm is 1.3 10^15cm, while the half-light radius of the rest frame 0.3-17 keV X-ray emission is 2.3 10^14cm. The formal uncertainties are factors of 1.6 and 2.0, respectively. With the exception of the lower limit on the X-ray size, the results are very stable against any changes in the priors used in the analysis. Based on the Hbeta line-width, we estimate that the black hole mass is ~10^8 Msun, which corresponds to a gravitational radius of r_g~2 10^13 cm. Thus, the X-ray emission is emerging on scales of ~10r_g and the 400 nm emission on scales of ~70 r_g. A standard thin disk of this size should be significantly brighter than observed. Possible solutions are to have a flatter temperature profile or to scatter a large fraction of the optical flux on larger scales after it is emitted. While our calculations were not optimized to constrain the dark matter fraction in the lens galaxy, dark matter dominated models are favored. With well-sampled optical and X-ray light curves over a broad range of frequencies there will be no difficulty in extending our analysis to completely map the structure of the accretion disk as a function of wavelength.Comment: Submitted to Ap

    Foundations of Black Hole Accretion Disk Theory

    Get PDF
    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at http://www.livingreviews.org/lrr-2013-

    Theory of disk accretion onto supermassive black holes

    Full text link
    Accretion onto supermassive black holes produces both the dramatic phenomena associated with active galactic nuclei and the underwhelming displays seen in the Galactic Center and most other nearby galaxies. I review selected aspects of the current theoretical understanding of black hole accretion, emphasizing the role of magnetohydrodynamic turbulence and gravitational instabilities in driving the actual accretion and the importance of the efficacy of cooling in determining the structure and observational appearance of the accretion flow. Ongoing investigations into the dynamics of the plunging region, the origin of variability in the accretion process, and the evolution of warped, twisted, or eccentric disks are summarized.Comment: Mostly introductory review, to appear in "Supermassive black holes in the distant Universe", ed. A.J. Barger, Kluwer Academic Publishers, in pres

    The Formation and Evolution of the First Massive Black Holes

    Full text link
    The first massive astrophysical black holes likely formed at high redshifts (z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations. These black holes grow by mergers and gas accretion, evolve into the population of bright quasars observed at lower redshifts, and eventually leave the supermassive black hole remnants that are ubiquitous at the centers of galaxies in the nearby universe. The astrophysical processes responsible for the formation of the earliest seed black holes are poorly understood. The purpose of this review is threefold: (1) to describe theoretical expectations for the formation and growth of the earliest black holes within the general paradigm of hierarchical cold dark matter cosmologies, (2) to summarize several relevant recent observations that have implications for the formation of the earliest black holes, and (3) to look into the future and assess the power of forthcoming observations to probe the physics of the first active galactic nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant Universe", Ed. A. J. Barger, Kluwer Academic Publisher

    General Overview of Black Hole Accretion Theory

    Full text link
    I provide a broad overview of the basic theoretical paradigms of black hole accretion flows. Models that make contact with observations continue to be mostly based on the four decade old alpha stress prescription of Shakura & Sunyaev (1973), and I discuss the properties of both radiatively efficient and inefficient models, including their local properties, their expected stability to secular perturbations, and how they might be tied together in global flow geometries. The alpha stress is a prescription for turbulence, for which the only existing plausible candidate is that which develops from the magnetorotational instability (MRI). I therefore also review what is currently known about the local properties of such turbulence, and the physical issues that have been elucidated and that remain uncertain that are relevant for the various alpha-based black hole accretion flow models.Comment: To be published in Space Science Reviews and as hard cover in the Space Sciences Series of ISSI: The Physics of Accretion on to Black Holes (Springer Publisher

    Black hole spin: theory and observation

    Full text link
    In the standard paradigm, astrophysical black holes can be described solely by their mass and angular momentum - commonly referred to as `spin' - resulting from the process of their birth and subsequent growth via accretion. Whilst the mass has a standard Newtonian interpretation, the spin does not, with the effect of non-zero spin leaving an indelible imprint on the space-time closest to the black hole. As a consequence of relativistic frame-dragging, particle orbits are affected both in terms of stability and precession, which impacts on the emission characteristics of accreting black holes both stellar mass in black hole binaries (BHBs) and supermassive in active galactic nuclei (AGN). Over the last 30 years, techniques have been developed that take into account these changes to estimate the spin which can then be used to understand the birth and growth of black holes and potentially the powering of powerful jets. In this chapter we provide a broad overview of both the theoretical effects of spin, the means by which it can be estimated and the results of ongoing campaigns.Comment: 55 pages, 5 figures. Published in: "Astrophysics of Black Holes - From fundamental aspects to latest developments", Ed. Cosimo Bambi, Springer: Astrophysics and Space Science Library. Additional corrections mad

    Performance studies of the CMS strip tracker before installation

    Get PDF
    Peer reviewe

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe
    corecore