178 research outputs found

    Microsatellite analysis of traditional eastern grapevine varieties and wild accessions from Geisenheim collection in Germany

    Get PDF
    The Geisenheim collection contains a number of old traditional grapevines obtained during the last century from many countries including wild grapevine accessions. Over 60 samples originating from Azerbaijan, Bulgaria, Dagestan, Egypt, Greece, Hungary, Kazakhstan, Lebanon, Moldova, Romania, Russia, Turkey, Ukraine and Uzbekistan were probed for analysis. Additionally 25 accessions of wild grapevines some acquired in Germany were included to the tested panel. Accessions were analysed on 9 microsatellite loci (VVS2, VVMD5, VVMD7, VVMD25, VVMD27, VVMD28, VVMD32, VrZAG62 and VrZAG79) for standard grapevine identification done in 4 multiplex PCRs. We obtained 13.56 overall average alleles per locus (12.44 in cultivated and 7.56 in wild grapevines). Expected and observed heterozygosity in cultivated grapevines were 0.826 and 0.644, while among wild accessions it was 0.693 and 0.464 respectively. The most informative locus proved to be VVMD28 in Vitis vinifera L. ssp. sativa and VVMD7 within V. vinifera L. ssp. sylvestris GMELIN. Microsatellite profiling will enable proper identification of cultivars by obtaining groups of synonyms and homonyms through comparative analysis as well assessment future estimation of relatedness between cultivated and wild accessions

    Energy Budgets for Terrestrial Extrasolar Planets

    Full text link
    The pathways through which incoming energy is distributed between the surface and atmosphere has been analyzed for the Earth. However, the effect of the spectral energy distribution of a host star on the energy budget of an orbiting planet may be significant given the wavelength-dependent absorption properties of atmospheric CO2 and water vapor, and surface ice and snow. We have quantified the flow of energy on aqua planets orbiting M-, G-, and F-dwarf stars, using a 3D Global Climate Model with a static ocean. The atmosphere and surface of an M-dwarf planet receiving an instellation equal to 88% of the modern solar constant at the top of the atmosphere absorb 12% more incoming stellar radiation than those of a G-dwarf planet receiving 100% of the modern solar constant, and 17% more radiation than a F-dwarf planet receiving 108% of the modern solar constant, resulting in climates similar to modern-day Earth on all three planets, assuming a 24-hr rotation period and fixed CO2. At 100% instellation, a synchronously-rotating M-dwarf planet exhibits smaller flux absorption in the atmosphere and on the surface of the dayside, and a dayside mean surface temperature that is 37 K colder than its rapidly-rotating counterpart. Energy budget diagrams are included to illustrate the variations in global energy budgets as a function of host star spectral class, and can contribute to habitability assessments of planets as they are discovered.Comment: 10 pages, 3 figures, 2 tables. Accepted for publication in The Astrophysical Journal Letter

    The Effect of Orbital Configuration on the Possible Climates and Habitability of Kepler-62f

    Get PDF
    Abstract As lower-mass stars often host multiple rocky planets, gravitational interactions among planets can have significant effects on climate and habitability over long timescales. Here we explore a specific case, Kepler-62f (Borucki et al., 2013), a potentially habitable planet in a five-planet system with a K2V host star. N-body integrations reveal the stable range of initial eccentricities for Kepler-62f is 0.00 ≤ e ≤ 0.32, absent the effect of additional, undetected planets. We simulate the tidal evolution of Kepler-62f in this range and find that, for certain assumptions, the planet can be locked in a synchronous rotation state. Simulations using the 3-D Laboratoire de Météorologie Dynamique (LMD) Generic global climate model (GCM) indicate that the surface habitability of this planet is sensitive to orbital configuration. With 3 bar of CO2 in its atmosphere, we find that Kepler-62f would only be warm enough for surface liquid water at the upper limit of this eccentricity range, providing it has a high planetary obliquity (between 60° and 90°). A climate similar to that of modern-day Earth is possible for the entire range of stable eccentricities if atmospheric CO2 is increased to 5 bar levels. In a low-CO2 case (Earth-like levels), simulations with version 4 of the Community Climate System Model (CCSM4) GCM and LMD Generic GCM indicate that increases in planetary obliquity and orbital eccentricity coupled with an orbital configuration that places the summer solstice at or near pericenter permit regions of the planet with above-freezing surface temperatures. This may melt ice sheets formed during colder seasons. If Kepler-62f is synchronously rotating and has an ocean, CO2 levels above 3 bar would be required to distribute enough heat to the nightside of the planet to avoid atmospheric freeze-out and permit a large enough region of open water at the planet's substellar point to remain stable. Overall, we find multiple plausible combinations of orbital and atmospheric properties that permit surface liquid water on Kepler-62f. Key Words: Extrasolar planets—Habitability—Planetary environments. Astrobiology 16, 443–464

    The Community Climate System Model version 3 (CCSM3)

    Get PDF
    Author Posting. © American Meteorological Society 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 19 (2006): 2122–2143, doi:10.1175/JCLI3761.1.The Community Climate System Model version 3 (CCSM3) has recently been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale dynamics, variability, and climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for the atmosphere and land and a grid with approximately 1° resolution for the ocean and sea ice. The new system incorporates several significant improvements in the physical parameterizations. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land–atmosphere fluxes, ocean mixed layer processes, and sea ice dynamics. There are significant improvements in the sea ice thickness, polar radiation budgets, tropical sea surface temperatures, and cloud radiative effects. CCSM3 can produce stable climate simulations of millennial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean–atmosphere fluxes in coastal regions west of continents, the spectrum of ENSO variability, the spatial distribution of precipitation in the tropical oceans, and continental precipitation and surface air temperatures. Work is under way to extend CCSM to a more accurate and comprehensive model of the earth's climate system.We would like to acknowledge the substantial contributions to and support for the CCSM project from the National Science Foundation (NSF), the Department of Energy (DOE), the National Oceanic and Atmospheric Administration, and the National Aeronautics and Space Administration

    The long-term and interannual variability of summer fresh water storage over the eastern Siberian shelf: Implication for climatic change

    Get PDF
    A time series of summer fresh water content anomalies (FWCA) over the Laptev and East Siberian sea shelves was constructed from historical hydrographic records for the period from 1920 to 2005. Results from a multiple regression between FCWA and various atmospheric and oceanic indices show that the fresh water content on the shelves is mainly controlled by atmospheric vorticity on quasi-decadal timescales. When the vorticity of the atmosphere on the shelves is antycyclonic, approximately 500 km3 of fresh water migrates from the eastern Siberian shelf to the Arctic Ocean through the northeastern Laptev Sea. When the vorticity of the atmosphere is cyclonic, this fresh water remains on the southern Laptev and East Siberian sea shelves. This FWCA represents approximately 35% of the total fresh water inflow provided by river discharge and local sea-ice melt, and is about ten times larger than the standard deviation of the Lena River summer long-term mean discharge. However, the large interannual and spatial variability in the fresh water content of the shelves, as well as the spatial coverage of the hydrographic data, makes it difficult to detect the long-term tendency of fresh water storage associated with climate change
    • …
    corecore