205 research outputs found

    Light and heavy transfer products in Xe 136 + U 238 multinucleon transfer reactions

    Get PDF
    A. Vogt et al.; 12 pags.; 14 figs.; PACS number(s): 24.10.−i, 25.70.Hi, 29.30.Aj, 29.40.Gx© 2015 American Physical Society. ©2015 American Physical Society. Background: Multinucleon transfer reactions (MNT) are a competitive tool to populate exotic neutron-rich nuclei in a wide region of nuclei, where other production methods have severe limitations or cannot be used at all. Purpose: Experimental information on the yields of MNT reactions in comparison with theoretical calculations are necessary to make predictions for the production of neutron-rich heavy nuclei. It is crucial to determine the fraction of MNT reaction products which are surviving neutron emission or fission at the high excitation energy after the nucleon exchange. Method: Multinucleon transfer reactions in Xe136+U238 have been measured in a high-resolution γ-ray/particle coincidence experiment. The large solid-angle magnetic spectrometer PRISMA coupled to the high-resolution Advanced Gamma Tracking Array (AGATA) has been employed. Beamlike reaction products after multinucleon transfer in the Xe region were identified and selected with the PRISMA spectrometer. Coincident particles were tagged by multichannel plate detectors placed at the grazing angle of the targetlike recoils inside the scattering chamber. Results: Mass yields have been extracted and compared with calculations based on the grazing model for MNT reactions. Kinematic coincidences between the binary reaction products, i.e., beamlike and targetlike nuclei, were exploited to obtain population yields for nuclei in the actinide region and compared to x-ray yields measured by AGATA. Conclusions: No sizable yield of actinide nuclei beyond Z=93 is found to perform nuclear structure investigations. In-beam γ-ray spectroscopy is feasible for few-neutron transfer channels in U and the -2p channel populating Th isotopes.The research leading to these results has received funding from the German Bundesministerium fur Bildung ¨ und Forschung (BMBF) under Contract No. 05P12PKFNE TP4, the European Union Seventh Framework Programme (FP7/2007-2013) under Grant No. 262010-ENSAR, and the Spanish Ministerio de Ciencia e Innovacion under Contract ´ No. FPA2011-29854-C04. A.V. thanks the Bonn-Cologne Graduate School of Physics and Astronomy (BCGS) for financial support. One of the authors (A. Gadea) was supported by MINECO, Spain, under Grants No. FPA2011-29854-C04 and No. FPA2014-57196-C5, Generalitat Valenciana, Spain, under Grant No. PROMETEOII/2014/019, and EU under the FEDER program.Peer Reviewe

    Spectroscopy of the neutron-rich actinide nucleus U-240 following multinucleon-transfer reactions

    Get PDF
    B. Birkenbach et al.; 9 pags.; 9 figs.; 2 tabs.; PACS number(s): 23.20.Lv, 25.70.Hi, 27.90.+b, 29.40.GxBackground: Nuclear structure information for the neutron-rich actinide nuclei is important since it is the benchmark for theoretical models that provide predictions for the heaviest nuclei. Purpose: gamma-ray spectroscopy of neutron-rich heavy nuclei in the actinide region. Method: Multinucleon-transfer reactions in Zn-70 + U-238 and Xe-136 + U-238 have been measured in two experiments performed at the INFN Legnaro, Italy. In the Zn-70 experiment the high-resolution HPGe Clover Array (CLARA) coupled to the magnetic spectrometer PRISMA was employed. In the Xe-136 experiment the high-resolution Advanced Gamma Tracking Array (AGATA) was used in combination with PRISMA and the Detector Array for Multinucleon Transfer Ejectiles (DANTE). Results: The ground-state band (g.s. band) of U-240 was measured up to the 20(+) level and a tentative assignment was made up to the (24(+)) level. Results from gamma gamma coincidence and from particle coincidence analyses are shown. Moments of inertia (MoI) show a clear upbend. Evidence for an extended first negative-parity band of U-240 is found. Conclusions: A detailed comparison with latest calculations shows best agreement with cranked relativistic Hartree-Bogoliubov (CRHB) calculations for the g.s. band properties. The negative-parity band shows the characteristics of a K-pi = 0 band based on an octupole vibration. ©2015 American Physical SocietyThe research leading to these results has received funding from the German Bundesministerium fur Bildung ¨ und Forschung (BMBF) under Contract No. 05P12PKFNE TP4, the European Union Seventh Framework Programme (FP7/2007-2013) under Grant No. 262010-ENSAR, and the Spanish Ministerio de Ciencia e Innovacion under Contract No. FPA2011-29854-C04. A.V. thanks the Bonn-Cologne Graduate School of Physics and Astronomy (BCGS) for financial support. One of the authors (A. Gadea) was supported by MINECO, Spain, under Grants No. FPA2011-29854-C04 759 and No. FPA2014-57196-C5; Generalitat Valenciana, Spain, under Grant No. PROMETEOII/2014/019; and EU under the FEDER program.Peer Reviewe

    High-spin structure of Xe 134

    Get PDF
    A. Vogt et al. ; 12 págs.; 9 figs.; 1 tab.Detailed spectroscopic information on the N∼82 nuclei is necessary to benchmark shell-model calculations in the region. The nuclear structure above long-lived isomers in Xe134 is investigated after multinucleon transfer (MNT) and actinide fission. Xenon-134 was populated as (i) a transfer product in Xe136+U238 and Xe136+Pb208 MNT reactions and (ii) as a fission product in the Xe136+U238 reaction employing the high-resolution Advanced Gamma Tracking Array (AGATA). Trajectory reconstruction has been applied for the complete identification of beamlike transfer products with the magnetic spectrometer PRISMA. The Xe136+Pt198 MNT reaction was studied with the γ-ray spectrometer GAMMASPHERE in combination with the gas detector array Compact Heavy Ion Counter (CHICO). Several high-spin states in Xe134 on top of the two long-lived isomers are discovered based on γγ-coincidence relationships and information on the γ-ray angular distributions as well as excitation energies from the total kinetic energy loss and fission fragments. The revised level scheme of Xe134 is extended up to an excitation energy of 5.832 MeV with tentative spin-parity assignments up to 16+. Previous assignments of states above the 7- isomer are revised. Latest shell-model calculations employing two different effective interactions reproduce the experimental findings and support the new spin and parity assignments.The research leading to these results has received funding from the German BMBF under Contract No. 05P12PKFNE TP4, from the European Union Seventh Framework Programme FP7/2007–2013 under Grant Agreement No. 262010 - ENSAR, from the Spanish Ministerio de Ciencia e Innovación under Contract No. FPA2011-29854-C04, from the Spanish Ministerio de Economía y Competitividad under Contract No. FPA2014-57196-C5, from the Bonn-Cologne Graduate School of Physics and Astronomy (BCGS), from the UK Science and Technology Facilities Council (STFC), and from the US National Science Foundation (NSF). One of the authors (A. Gadea) has been supported by the Generalitat Valenciana, Spain, under Grant No. PROMETEOII/2014/019 and EU under the FEDER program.Peer Reviewe

    Study of the γ decay of high-lying states in 208Pb via inelastic scattering of 17O ions

    Get PDF
    High-lying states in 208Pb nucleus were populated via inelastic scattering of a 17O beam at bombarding energy of 20 MeV/u. Their subsequent gamma decay was measured with the detector system AGATA Demonstrator based on HPGe detectors, coupled to an array of large volume LaBr3:Ce scintillators. Preliminary results in comparison with (γ,γ′) data, for states in the 5–8 MeV energy interval, seem to indicate that in that region the states belong to two different groups one with a isoscalar character and the other with a isovector nature. This is similar to what was observed in other stable nuclei with (α,α′γ) experiments. The multipolarity of the observed gamma transitions is determined with remarkable sensitivity thanks to angular distribution measurements. Data aiming at studying the neutron decay of the Giant Quadrupole Resonance in the 208Pb by the high resolution measurement of the following gamma decay are also presented in their preliminary form

    Isospin dependence of electromagnetic transition strengths among an isobaric triplet

    Get PDF
    Electric quadrupole matrix elements, M, for the J=2→0, ΔT=0, T=1 transitions across the A=46 isobaric multiplet Cr-V-Ti have been measured at GSI with the FRS-LYCCA-AGATA setup. This allows direct insight into the isospin purity of the states of interest by testing the linearity of M with respect to T. Pairs of nuclei in the T=1 triplet were studied using identical reaction mechanisms in order to control systematic errors. The M values were obtained with two different methodologies: (i) a relativistic Coulomb excitation experiment was performed for Cr and Ti; (ii) a “stretched target” technique was adopted here, for the first time, for lifetime measurements in V and Ti. A constant value of M across the triplet has been observed. Shell-model calculations performed within the fp shell fail to reproduce this unexpected trend, pointing towards the need of a wider valence space. This result is confirmed by the good agreement with experimental data achieved with an interaction which allows excitations from the underlying sd shell. A test of the linearity rule for all published data on complete T=1 isospin triplets is presented.Peer Reviewe

    Identification of high-spin proton configurations in Ba 136 and Ba 137

    Get PDF
    19 pags., 11 figs., 3 tabs.The high-spin structures of Ba136 and Ba137 are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Ba136 is populated in a Xe136+U238 MNT reaction employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy, and in two Be9+Te130 fusion-evaporation reactions using the High-efficiency Observatory for γ-Ray Unique Spectroscopy (HORUS) at the FN tandem accelerator of the University of Cologne, Germany. Furthermore, both isotopes are populated in an elusive reaction channel in the B11+Te130 fusion-evaporation reaction utilizing the HORUS γ-ray array. The level scheme above the Jπ=10+ isomer in Ba136 is revised and extended up to an excitation energy of approximately 5.5 MeV. From the results of angular-correlation measurements, the Ex=3707- and Ex=4920-keV states are identified as the bandheads of positive- and negative-parity cascades. While the high-spin regimes of both Te132 and Xe134 are characterized by high-energy 12+→10+ transitions, the Ba136E2 ground-state band is interrupted by negative-parity states only a few hundred keV above the Jπ=10+ isomer. Furthermore, spins are established for several hitherto unassigned high-spin states in Ba137. The new results close a gap along the high-spin structure of N<82 Ba isotopes. Experimental results are compared to large-scale shell-model calculations employing the GCN50:82, Realistic SM, PQM130, and SN100PN interactions. The calculations suggest that the bandheads of the positive-parity bands in both isotopes are predominantly of proton character.Furthermore, we express our thanks to Dr. E. Teruya and Dr. N. Yoshinaga from Saitama University, Japan, for providing the results of their shellmodel calculation with the PQM130 interaction. The research leading to these results has received funding from the German BMBF under Contracts No. 05P15PKFN9 TP1 and No. 05P18PKFN9 TP1, from the European Union Seventh Framework Programme FP7/2007-2013 under Grant Agreement No. 262010 - ENSAR, from the Spanish Ministerio de Ciencia e Innovación under Contract No. FPA2011-29854- C04, from the Spanish Ministerio de Economía y Competitividad under Contract No. FPA2014-57196-C5, and from the UK Science and Technology Facilities Council (STFC). L.K. and A.V. thank the Bonn-Cologne Graduate School of Physics and Astronomy (BCGS) for financial support. One of the authors (A. Gadea) has been supported by the Generalitat Valenciana, Spain, under Grant No. PROMETEOII/2014/019, and EU under the FEDER program

    Quadrupole collectivity in Ca 42 from low-energy Coulomb excitation with AGATA

    Get PDF
    A Coulomb-excitation experiment to study electromagnetic properties of Ca42 was performed using a 170-MeV calcium beam from the TANDEM XPU facility at INFN Laboratori Nazionali di Legnaro. γ rays from excited states in Ca42 were measured with the AGATA spectrometer. The magnitudes and relative signs of ten E2 matrix elements coupling six low-lying states in Ca42, including the diagonal E2 matrix elements of 21+ and 22+ states, were determined using the least-squares code gosia. The obtained set of reduced E2 matrix elements was analyzed using the quadrupole sum rule method and yielded overall quadrupole deformation for 01,2+ and 21,2+ states, as well as triaxiality for 01,2+ states, establishing the coexistence of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in Ca42. The experimental results were compared with the state-of-the-art large-scale shell-model and beyond-mean-field calculations, which reproduce well the general picture of shape coexistence in Ca42

    Shape evolution in the neutron-rich osmium isotopes:Prompt γ-ray spectroscopy of Os 196

    Get PDF
    The shape transition in the neutron-rich Os isotopes is studied by investigating the neutron-rich 196Os nucleus through in-beam γ-ray spectroscopy using a two-proton transfer reaction from a 198Pt target to a 82Se beam. The beam-like recoils were detected and identified with the large-acceptance magnetic spectrometer PRISMA, and the coincident γ rays were measured with the advanced gamma tracking array (AGATA) demonstrator. The de-excitation of the low-lying levels of the yrast-band of 196Os were identified for the first time. The results are compared with state-of-the-art beyond-mean-field calculations, performed for the even-even 188-198Os isotopes. The new results suggest a smooth transition in the Os isotopes from a more axial rotational behavior towards predominately vibrational nuclei through triaxial configurations. An almost perfect γ-unstable/triaxial rotor yrast band is predicted for 196Os which is in agreement with the experimentally measured excited state
    corecore