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Abstract

Although the protective functions by T helper 17 (Th17) cytokines against extracellular bacterial and fungal infection have
been well documented, their importance against intracellular bacterial infection remains unclear. Here, we investigated the
contribution of Th17 responses to host defense against intracellular bacteria Listeria monocytogenes and found that Th17
cell generation was suppressed in this model. Unexpectedly, mice lacking both p35 and EBI3 cleared L. monocytogenes as
efficiently as wild-type mice, whereas p35-deficient mice failed to do so. Furthermore, both innate cells and pathogen-
specific T cells from double-deficient mice produced significantly higher IL-17 and IL-22 compared to wild-type mice. The
bacterial burden in the liver of double-deficient mice treated with anti-IL-17 was significantly increased compared to those
receiving a control Ab. Transfer of Th17 cells specific for listeriolysin O as well as administration of IL-17 and IL-22
significantly suppressed bacterial growth in p35-deficient mice, indicating the critical contribution of Th17 responses to host
defense against the intracellular pathogen in the absence of IL-12 and proper Th1 responses. Our findings unveil a novel
immune evasion mechanism whereby the intracellular bacteria exploit IL-27EBI3 to suppress Th17-mediated protective
immunity.
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Introduction

The generation of pathogen-specific T cell responses is essential

for the clearance of infectious agents. This involves the differen-

tiation of naı̈ve T cells into distinct pathogen-specific helper T cell

lineages in a process that largely depends on the cytokine milieu

created by innate immune cells upon their activation. Among

these innate cytokines, the IL-12 family plays a pivotal role during

the differentiation of helper T cells by promoting or inhibiting the

lineage program of Th1 or Th17 cells. IL-12 and Th1 responses

mediate protective immunity against intracellular pathogens such

as Mycobacterium tuberculosis, Francisella tularemia, and Listeria monocy-

togenes [1,2]. Conversely, the production of IL-23 and the

generation of Th17 responses are thought to mediate host defense

against extracellular bacteria such as Staphylococcus aureus, Klebsiella

pneumoniae, and Citrobacter rodentum [3,4,5,6], as well as fungi such as

Candida albicans and Pneumocystis carnii [7,8]. The function of Th17

cells following intracellular bacterial infection is less clear.

The IL-12 gene family consists of p35, p40, p19, p28 and

Epstein-Barr virus-induced 3 (EBI3). Different combination of two

gene-products from this family results in the production of four

cytokines: IL-12 (p35/p40), IL-23 (p19/p40), IL-27 (p28/EBI3)

and IL-35 (p35/EBI3) [9,10]. IL-12, IL-23 and IL-27 are

produced by antigen-presenting cells such as dendritic cells (DC)

and macrophages, whereas IL-35 is primarily produced by

regulatory T cells [9,10]. IL-12 is essential for promoting IFNc
production by innate cells such as NK and NKT cells following

viral and bacterial infections. The IL-12 family also impacts

adaptive T cell responses where IL-12 promotes Th1 generation

and IL-23 promotes Th17 cells. IL-27 is thought to mediate the

early phase of Th1 responses [11]. For instance, mice deficient in

IL-27Ra exhibit reduced Th1 responses following infection with

intracellular pathogens such as Listeria monocytogenes and Leishmania

major [12,13]. In contrast, others have shown that the IL-27

receptor signal is not required for Th1 polarization but rather

inhibits IFNc production by CD4+ T cells in an animal model of
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Toxoplasma gondii infection [14]. IL-27 has also been shown to

suppress Th17 differentiation and Th17-mediated tissue inflam-

mation [15,16], probably by inducing the expression of PD-L1 on

T cells [17]. More recently, it has been demonstrated that IL-27

drives the differentiation of IL-10 producing CD4+ T cells

[18,19,20], suggesting anti-inflammatory function of this cytokine.

Thus, IL-12 family of cytokines are involved in complex and often

opposing roles in the development of helper T cell responses

during infection and inflammation.

Listeria monocytogenes (Lm) is a Gram-positive, intracellular

bacterium that can cause meningitis and encephalitis in im-

mune-compromised individuals as well as reproductive issue in

pregnant women [21]. The host defense against Lm involves a

complex network of innate and adaptive immune cells. Following

infection, Lm promptly triggers a series of innate immune cell

activation where IFNc produced mainly by natural killer (NK)

cells contributes to initial resistance then triggers the induction of

TNF-a and iNOS-producing dendritic cells (Tip-DC) that can

control bacterial growth in vivo. In addition, neutrophils and

macrophages are recruited and mediate killing of the intracellular

pathogen. Finally, pathogen specific CD4+ T cells and CD8+ T

cells are generated and mediate efficient bacterial clearance and

recall responses to the pathogen [21]. cd T cells may also be

involved in an innate capacity as mice deficient in cd T cells are

more susceptible to the Lm infection [22]. In this regard, a recent

study showed that IL-23 mediated activation of IL-17-producing

cd T cells can contribute the resistance against Lm infection

[23,24].

The importance of Th17 responses in the host defense against

extracellular pathogens has been well described, however, whether

Th17 cells and Th17 cytokines play a role against intracellular

pathogen remains unclear. In addition, no study to date has fully

addressed the relative contribution of IL-12 family cytokines

following intracellular bacterial infection. To address these issues,

we investigated anti-Listeria immunity in mice deficient in IL-

12p35, IL-27EBI3, or both. Unexpectedly, our findings uncovered

a dominant negative regulatory role of IL-27EBI3 in the protective

immunity to Lm, especially in the absence of IL-12p35. The

function of EBI3 was, at least in part, mediated by inhibiting the

production of Th17 cytokines.

Results

Innate and helper T cell responses against Listeria
monocytogenes infection

Systemic infection with Lm is known to induce pathogen-

specific Th1 cells. To examine if pathogen-specific Th17 cells are

also generated during infection, we intravenously infected C57BL/

6 mice with Lm expressing ovalbumin (Lm-Ova) [25], and

examined the expression of IL-17 and IFNc by splenic CD4+ T

cells after restimulation with an Lm-specific, MHC II-restricted

peptide (listeriolysin O (LLO)190–201). As expected, intravenous

infection with live Lm-Ova induced a high percentage of IFNc-

producing CD4+ T cells (Figure 1A). By contrast, very few CD4+ T

cells expressed IL-17 in the spleens of the infected mice.

Among the IL-12 family cytokines, IL-23 mediates Th17

immunity while IL-12 and IL-27 induce Th1 and suppress Th17

responses. To determine if the Lm dominant Th1 responses were

due to a preferential induction of IL-12 and IL-27, we examined

the induction of IL-12 family genes in dendritic cells and

macrophages stimulated with lethally irradiated Lm. Importantly,

irradiation induces the inactivation of Lm without affecting

adjuvanticity and immunogenicity [26]. Stimulation of bone

marrow-derived dendritic cells or macrophages with irradiated

Lm induced the expression of Il12a (encoding IL-12p35), Il12b

(encoding IL-12/IL23p40), Il23a (encoding IL-23p19), Ebi3

Figure 1. CD4+ T cell responses and the induction of IL-12
family genes after infection with L. monotytogenes. A, C57BL/6
mice were intravenously infected with 2.56104 Lm-Ova on day 0, and
splenocytes were obtained on day 7. CD4+ T cells expressing IFNc and
IL-17 were measured by intracellular staining after stimulation with
LLO190–201. B and C, Bone marrow-derived DC or macrophages were
stimulated with LPS, Pam3CSK4, or irradiated Lm-Ova for four hours.
Cells were harvested and analyzed for the mRNA expression of IL-12
family genes by using RT-PCR (B, bone marrow-derived DC), or
quantitative real-time PCR analysis (C). Values are mean 6 SD. Data
shown represent two independent experiments.
doi:10.1371/journal.ppat.1003628.g001

Author Summary

There is a considerable gap in our understanding of how
pathogenic intracellular bacteria escape innate and adap-
tive host immunity. Production of IL-12, and subsequently
IFNc, upon infection triggers host immunity that prevents
early dissemination of pathogenic intracellular pathogens.
This is evident in observing the increased susceptibility of
patients with deficiencies in IL-12, IFNc, or their receptors
to pathogenic intracellular bacteria such as Mycobacterium
tuberculosis and Listeria monocytogenes (Lm). Paradoxically,
the regulation of host defense by other members of the IL-
12 family is poorly understood. Through the use of an
animal model of Lm infection, we show that mice lacking
IL-27EBI3 were resistant to Lm infection, even in the
absence of IL-12. Neutralization and adoptive transfer
studies showed that this protection was mediated through
IL-17, IL-22 and Th17 responses. Thus our results identify
IL-27EBI3 as a critical mechanism for immune escape by
Lm in the absence of IL-12-mediated protective immunity.
Furthermore, our work suggests that targeting IL-27EBI3
may represent a novel strategy for the treatment of
bacterial infection in individuals lacking proper IL-12
responses.

EBI3-Mediated Immune Evasion by L. monocytogenes
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(encoding IL-27EBI3) and Il27 (encoding IL-27p28) as efficiently

as LPS stimulation (Figure 1B & C). Together, these data

demonstrate that while all genes in the IL-12 family were induced

upon Lm encounter, only Th1 immunity was induced after

systemic infection with Lm-Ova in vivo.

Increased Listeria-specific Th17 responses in p352/2

EBI32/2 mice
We next sought to address whether the lack of pathogen-specific

Th17 immunity in wild-type mice after Lm-Ova infection was due

to IL-12 and IL-27. To analyze the relative contribution of IL-

12p35 and IL-27EBI3, we first crossed p352/2 mice with EBI32/2

to generate p352/2 EBI32/2 mice. Wild-type, p352/2, EBI32/2,

or p352/2EBI32/2 mice were then systemically infected with Lm-

Ova via the intravenous route. Seven days later, we restimulated

splenocytes from the infected mice with LLO190–201 to measure

pathogen-specific CD4+ T cell responses. As expected, we observed

high percentages of IFNc-producing CD4+ T cells (,20%), while

few CD4+ T cells produced IL-17 in the wild-type mice (,0.5%)

(Figure 2A & B). Compared with wild-type mice, the production of

IFNc by LLO-specific CD4+ T cells was greatly diminished in

p352/2 mice. Notably, although the IL-27 may be an inducer of

Th1 responses [12,13], we did not observe any defect in the

percentage of IFNc-producing CD4+ T cells in EBI32/2 mice

(Figure 2A & B). Instead, we observed that the frequency of IL-17-

producing CD4+ T cells in the EBI3-deficient mice was significantly

higher than those of wild-type mice, likely due to the increased

population producing both IFNc and IL-17 among CD4+ T cells

(Figure 2A & B). Notably, compared with p352/2 and EBI32/2 mice,

p352/2EBI32/2 mice exhibited a significantly increased frequency of

IL-17+IFNc2 CD4+ T cells (Figure 2A & B). Consequently, the

production of IL-17 and IL-22 by Lm-specific CD4+ T cells was far

higher in the p352/2EBI32/2 mice compared to wild-type mice

(Figure 2C). p352/2 and EBI32/2 mice both showed a slight increase

in the frequency of IL-17+ CD4+ T cells, however, the amounts of IL-

17 produced after antigen restimulation were far less than that of

p352/2EBI32/2 mice. Thus, p352/2EBI32/2 mice exhibited

diminished Th1 and enhanced Th17 responses to Lm-Ova infection,

indicating that IL-27EBI3 and IL-12p35 cooperatively suppress the

generation of pathogen-specific Th17 cells after infection.

Activation of CD8+ T cells and innate cells in the absence
of IL-12p35 and/or IL-27EBI3 following L. monocytogenes
infection

To measure the pathogen-specific CD8+ T cell responses to Lm-

Ova, we restimulated splenocytes from infected mice with

SIINFEKL peptide. CD8+ T cells derived from p352/2 mice

and EBI32/2 mice exhibited similar or higher percentages of

IFNc compared to wild-type T cells (Figure 3A). Moreover, the

percentages of Ova-specific MHC I tetramer-positive CD8+ T

cells were significantly higher in p352/2, EBI32/2, and p352/

2EBI32/2 mice compared to wild-type mice (Figure 3B). The

frequencies of CD8+ T cells expressing granzyme B were

comparable among wild-type, p352/2, and p352/2EBI32/2

mice while decreased in EBI32/2 mice (Figure 3A & B). Hence,

the generation of pathogen-specific CD8+ T cells is largely

independent of p35 and EBI3. These results are consistent, in

part, with a previous study showing that IL-12 is not required for

IFNc production but rather inhibits the generation of memory

CD8+ T cells [27]. By contrast, we observed that the amounts of

IL-17 and IL-22 produced by CD8+ T cells were remarkably

higher in p352/2EBI32/2 mice than those in the wild-type

(Figure 3C). Hence, in the absence of IL-12p35 and IL-27EBI3,

systemic Lm-Ova infection triggers increased production of IL-17

and IL-22 by pathogen-specific CD8+ T cells.

To further examine the regulation of host defensive immunity

by the cytokines of IL-12 family, we analyzed the activation of

innate immune cells during the early phase of Lm infection. IL-12

triggers IFNc production in NK cells and NKT cells which is

critical for the activation of innate cells and the prevention of Lm

propagation [28]. Consistent with this notion, we observed a

significant reduction of IFNc-producing NKT cells and NK cells

in p352/2 mice as well as in p352/2EBI32/2 mice infected with

Lm-Ova (Figure 4A). The percentages of IFNc-producing NKT

cells and NK cells in EBI32/2 mice were comparable to those

from wild-type mice, indicating that there is no significant role of

EBI3 in the induction of IFNc from NK and NKT cells after Lm-

Ova infection. Ly6C+CD11bhi dendritic cells, also known as Tip-

DC, suppress the dissemination of Lm [28,29]. We observed

comparable percentages of the Ly6C+CD11bhi DC in p352/2,

EBI32/2 as well as p352/2 EBI32/2 mice with that of wild-type

mice (Figure 4B). Therefore, the induction of Tip-DC was likely

normal in mice lacking p35, EBI3, or both in this experimental

setting.

NK, NKT, and cd T cells represent additional sources of innate

Th1 and Th17 cytokines that could be potentially released

following Lm infection. To investigate the contributions of the

cellular subsets, we measured the production of IFNc, IL-17, and

IL-22 from splenocytes obtained three days after Lm-Ova

infection. As depicted in Figure 4C, p352/2 mice as well as

p352/2 EBI32/2 mice showed significantly diminished IFNc

Figure 2. Increased pathogen-specific Th17 responses in the
absence of IL-12p35 and IL-27EBI3. C57BL/6 (WT) or the indicated
strains of mice (n = 5 per group) were intravenously infected with
2.56104 Lm-Ova on day 0. Seven days later, lymphoid cells from the
spleen were obtained and CD4+ T cells expressing IFNc and IL-17 were
measured by intracellular staining after stimulation with LLO190–201 (A
and B). The lymphoid cells from the spleen were stimulated with
LLO190–201 peptide for three days, and the concentrations of IFNc, IL-17
and IL-22 in the supernatant were measured by ELISA (C). Bars in B are
mean 6 SEM. Values in C are mean 6 SEM. Data shown are
representative of two independent experiments. *,p,0.05; **,p,0.01
in comparison with WT group. #,p,0.05; ##,p,0.01 in comparison
with p352/2 group.
doi:10.1371/journal.ppat.1003628.g002

EBI3-Mediated Immune Evasion by L. monocytogenes
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while EBI32/2 mice showed comparable IFNc production. In

contrast, the amounts of IL-17 in the supernatant were higher in

EBI32/2 and p352/2 EBI32/2 mice compared with those of

wild-type mice. The IL-22 production was higher in p352/2 and

p352/2 EBI32/2 mice. Collectively, these data suggest that the

regulation of Th1 and Th17 cytokines by innate immune cells is

also under the control of multiple IL-12 family cytokines.

p352/2EBI32/2 mice are resistant to L. monocytogenes
infection

We next addressed the differential roles of the IL-12 family

cytokines in host defense against Lm infection. Wild-type, p352/2,

EBI32/2, or p352/2EBI32/2 mice were intravenously infected

with Lm-Ova and bacterial burden in the livers and spleens were

measured three days later. As expected, p352/2 mice showed

higher bacterial burden in the livers compared to wild-type

Figure 3. Pathogen-specific CD8+ T cell responses in the absence of IL-12p35 and IL-27EBI3. C57BL/6 (WT) or the indicated strains of mice
(n = 5 per group) were intravenously infected with 2.56104 Lm-Ova on day 0. Seven days later, lymphoid cells from the spleen were obtained and
CD8+ T cells expressing IFNc and granzyme B were measured by intracellular staining after stimulation with SIINFEKL (A and B). CD8+ T cells
expressing T cell receptors specific to Ova were analyzed by staining with SIINFEKL-loaded Kb tetramer (B). The lymphoid cells from the spleen were
stimulated with SIINFEKL peptide for three days, and the concentrations of IFNc, IL-17 and IL-22 in the supernatant were measured by ELISA (C). Bars
in B are mean 6 SEM. Values in C are mean 6 SEM. Data shown are representative of two independent experiments. *,p,0.05; **,p,0.01 in
comparison with WT group. #,p,0.05; ##,p,0.01 in comparison with p352/2 group.
doi:10.1371/journal.ppat.1003628.g003

Figure 4. Enhanced production of Th17 cytokines in the p352/2EBI32/2 mice during the early phase of infection with L.
monocytogenes. C57BL/6 (WT) or the indicated strains of mice (n = 3 per group) were intravenously infected with 2.56104 Lm-Ova on day 0. Two to
three days later, lymphoid cells were analyzed for the production of IFNc by NK and NKT cells (A), or for the frequency of CD11b+Ly6C+ Tip DC (B). The
production of IFNc, IL-17, IL-17F and IL-22 by the splenocytes obtained three days after the infection was measured (C). Values are mean 6 SD. Data
shown are representative of two independent experiments. *,p,0.05; **,p,0.01 in comparison with WT group.
doi:10.1371/journal.ppat.1003628.g004

EBI3-Mediated Immune Evasion by L. monocytogenes
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controls (Figure 5A). We observed significantly less bacterial

burden in the livers of EBI32/2 mice compared with those from

wild-type, indicating that EBI3 is not required for the host defense

against the infection. To our surprise, the bacterial burden in the

livers of p352/2EBI32/2 mice was significantly lower than that of

p352/2 mice, to levels comparable to EBI32/2 mice (Figure 5A).

Within the spleens, p352/2EBI32/2 mice exhibited significantly

lower bacterial burden compared to p352/2 mice; however, there

was no evident difference in bacterial burden between wild-type

and EBI32/2 or p352/2EBI32/2 mice (Figure S1A).

We also measured bacterial burden 7 days after infection and

found that p352/2 mice failed to control bacterial growth with

significantly higher levels of bacteria in the livers compared to

wild-type animals (Figure 5B). However, EBI32/2 as well as

p352/2 EBI32/2 mice showed comparable levels of bacteria in

the livers compared to wild-type mice (Figure 5B). We also

observed similar pattern of bacterial burdens in the spleens of these

mice (Figure S1B). Therefore, the bacterial resistance observed at

day 3 largely remained intact by day 7 post infection. Collectively,

these findings demonstrate that EBI3-deficiency conferred resis-

tance to Lm-Ova infection in the absence of IL12p35, indicative of

possible antagonistic function of IL-12p35 and IL-27EBI3 in host

defense to the intracellular bacterial infection. Furthermore, in the

absence of IL-12p35, IL-27EBI3 likely exerts strong immunosup-

pressive activity and thus mediates immune evasion of the Lm in

vivo.

IL-17 and IL-22 mediate anti-Listeria immunity in the
absence of IL-12p35

The enhanced production of IL-17 and IL-22 we observed in

p352/2EBI32/2 mice by both innate and adaptive immune

compartments led us to hypothesize that the induction of the

Th17 cytokines might be responsible for the observed resistance

of p352/2EBI32/2 mice against Lm-Ova infection. To test this

hypothesis, we infected p352/2EBI32/2 mice with Lm-Ova

and then injected anti-IL-17 or control Ab. Notably, the

bacterial burden in the livers of the mice receiving anti-IL-17

showed a modest but significant increase (8 times higher) compared

with that of the control Ab group; however the burden was still

substantially lower than that observed in p352/2 mice (Figure 6A).

This result demonstrates that the upregulated production of IL-

17, at least in part, contributed to the observed resistance of

p352/2EBI32/2 mice to Lm-Ova infection.

Based on our findings, we hypothesized that IL-17-producing

cells suppress the growth of Lm, especially in the absence of IL-

12p35. To address this point, we investigated if Lm-specific Th17

cells are sufficient to limit the growth of Lm in the absence of IL-

12-mediated innate and adaptive immunity. To obtain Lm-

specific Th17 cells, we first isolated lymphoid cells from IL-17Frfp

mice [30] after immunization with LLO190–201 emulsified in CFA

and then restimulated them with peptide in the presence of IL-23,

IL-1b and anti-IFNc to specifically expand the Th17 population

[31]. After 5 days culture, we sorted RFP+ CD4+ cells (Figure 6B;

.80% IL-17+ and ,15% IFNc+), and transferred them i.v. into

p352/2 mice. Wild-type and p352/2 mice receiving no cells were

used as controls. All mice were then infected with Lm-Ova, and

the bacterial burden in the liver was measured 7 days post

infection. As shown in Figure 6C, the p352/2 mice receiving the

RFP+ CD4+ T cells showed significantly less bacterial load in the

liver compared to p352/2 mice receiving no cells (26.8 times

lower), although the bacterial burden in the former group was still

higher than that of the wild-type mice.

These results demonstrated that Lm-specific Th17 cells are

protective against Lm-Ova in the absence of IL-12p35; however, it

is possible that small population of IFNc-producers among the

RFP+ donor T cells (,15%) mediated this protection. To rule out

this possibility and to further determine the protective immunity

mediated by IL-17 and IL-22, we next examined if administration

of recombinant IL-17 or IL-22 mediates host defense against Lm-

Ova in the absence of IL-12p35. As depicted in Figure 7, p352/2

mice treated with IL-17 or IL-22 alone showed a slightly lower,

but not statistically significant, bacterial load in the liver than

saline-treated mice. Notably, administration of both cytokines

induced a significantly lower bacterial burden in the liver than

saline-, IL-17- or IL-22-treated p352/2 mice (29.5 times less than

saline-treated mice). Administration of IL-17 and IL-22, however,

did not fully restore the resistance of p352/2 mice, since the

bacterial load was still higher than that of wild-type mice (Figure 7

and Figure S2). The inhibition of bacterial growth by exogenous

IL-17 or IL-22 was more evident in the bacterial load in the

spleens (Figure S2). Taken together, these results indicate that the

Th17 cytokines IL-17 and IL-22 act synergistically to induce

protective anti-Listeria immunity in the absence of IL-12p35.

Figure 5. p352/2EBI32/2 mice are resistant to the infection with L. monocytogenes. C57BL/6 (WT) or the indicated strains of mice (n = 4–5
per group) were intravenously infected with 2.56104 Lm-Ova on day 0. Three (A) or seven (B) days later, the bacterial burden in the livers of the
infected mice was analyzed by measuring colony-forming unit. Bars are mean values. Data shown are representative of three independent
experiments. *, p,0.05 and **, p,0.01 in comparison between two indicated groups.
doi:10.1371/journal.ppat.1003628.g005

EBI3-Mediated Immune Evasion by L. monocytogenes
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Discussion

In this study, we comparatively analyzed the contribution of IL-

12p35 and IL-27EBI3 to the host defense against the intracellular

pathogen Lm. We demonstrate that, although p352/2 mice failed

to control bacterial growth, mice deficient in both p35 and EBI3

had no such defect in controlling bacterial growth. Our study also

revealed that IL-17 is involved in the protective immunity in

p352/2EBI32/2 mice. Furthermore, administration of Th17 cells

as well as recombinant IL-17 and IL-22 significantly suppressed

bacterial growth in p352/2 mice. These findings strongly suggest

that Lm utilizes IL-27EBI3 to escape Th17-mediated immune

surveillance in IL-12p35-deficient mice. Thus, the present study

unveils a previously unappreciated immune escape mechanism of

intracellular bacteria through IL-27EBI3, and that Th17 responses

play an important role in intracellular bacterial infection,

especially in the absence of IL-12 and Th1-mediated immunity.

NK cells, NKT cells and Tip-DC are well known innate effector

cells that suppress bacterial growth during the early phase of Lm

infection [28,29]. IL-12 is required for the induction of IFNc from

NK and NKT cells which then mediates the recruitment of Tip-

DC. Comparative analysis between p352/2 and p352/2 EBI32/2

mice showed no apparent difference in the activation of NK and

NKT cells and the frequency of Tip-DC. In addition, the

percentages of effector CD8+ T cells expressing granzyme B were

similar between p352/2 and p352/2EBI32/2 mice. Moreover,

although IL-27 has been reported to drive the differentiation of IL-

10 producing CD4+ T cells [18,19,20], we observed comparable

expression of the Il10 transcript between wild-type and EBI32/2

mice after Lm-Ova infection (data not shown). Therefore, we

conclude that the increased resistance to Lm in p352/2EBI32/2

mice is not due to the enhanced activity of these innate immune

cells nor CD8+ T cells.

Accumulating evidence suggests that some of the Th1 cells

recruited to inflamed tissues are actually derived from Th17 cells

[32,33]. However, we observed that very few LLO-specific IFNc-

producing CD4+ T cells in wild-type mice after Lm infection co-

expressed IL-17. In addition, LLO-specific, IFNc-producing

CD4+ T cells in IL-17FCre6Rosa26eYFP mice after Lm infection

were .99% YFP-negative (data not shown), indicating that Th1

cells do not originate from Th17 cells in this model.

Notably, we observed increased production of IL-17 and IL-22

by innate immune cells, presumably cd T cells [24,34], as well as

Lm-Ova-specific CD4+ T and CD8+ T cells in p352/2EBI32/2

mice. IL-22 is a Th17 cytokine that induces a series of anti-

microbial peptides upon infection [4,5,35,36]. The mechanism of

protection by these Th17 cytokines, however, significantly differs

Figure 6. A role for IL-17 and Th17 cells on the resistance of p352/2EBI32/2 mice against L. monocytogenes infection. A, C57BL/6 (WT)
or the indicated strains of mice (n = 4 per group) were intravenously infected with 2.56104 Lm-Ova on day 0. The mice were i.p. injected with 100 mg
of anti-IL-17 or rat IgG on day 0, 2, 4. Seven days after the infection, bacterial burden in the livers of the infected mice was determined by measuring
colony-forming unit. *, p,0.05 in comparison with rat IgG-treated group. B and C, IL-17Frfp reporter mice were s.c. immunized with LLO peptide
emulsified in CFA. Seven days later, lymphoid cells from spleen and draining lymph nodes of the immunized mice were isolated and stimulated with
the LLO peptide in the presence of IL-23 (50 ng/ml), IL-1b (10 ng/ml) and anti-IFNc for 5 days. CD4+ RFP+ cells were isolated by flow cytometry, and
the expression of IL-17 and IFNc was measured by intracellular staining (B). The sorted Th17 cells (56105 cells per transfer) were i.v. transferred into
p352/2 mice, followed by i.v. infection with 2.56104 Lm-Ova. WT or p352/2 mice without the cell transfer were used as controls. Seven days after
infection, bacterial burden in the liver was measured (C). Data shown are representative of two independent experiments. *, p,0.05 in comparison
with p352/2 mice without Th17 cell transfer.
doi:10.1371/journal.ppat.1003628.g006

Figure 7. IL-17 and IL-22 cooperatively promote protective
immunity against L. monocytogenes infection in p352/2 mice. A,
C57BL/6 (WT) or groups of p352/2 mice (n = 5 per group) were
intravenously infected with 2.56104 Lm-Ova on day 0. Some of the
p352/2 mice were i.p. injected with 1 mg of recombinant IL-17, IL-22, or
both on day 0, 2, 4. Seven days after the infection, bacterial burden in
the livers of the infected mice was determined by measuring colony-
forming unit. Bars are mean values. *, p,0.05 in comparison between
two indicated groups.
doi:10.1371/journal.ppat.1003628.g007
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from that of IFNc due to the distribution of receptors and

differential downstream targets. IFNc mediates protective immu-

nity by multiple mechanisms including the induction of iNOS and

autophagy [21,37,38], whereas IL-17 does so possibly through

neutrophil recruitment and by enhancing cross-presentation of

bacterial antigens [24,34]. In the present study, the amounts of IL-

17 and IL-22 produced by innate cells and the pathogen-specific T

cells were significantly increased in p352/2EBI32/2 mice.

Furthermore, exogenous IL-17 and IL-22 synergistically induced

protective immunity in p35-deficient mice, while each cytokine

individually could only invoke marginal protection. Supporting

this notion, it has been documented that IL-17 and IL-22

synergistically induce the expression of antimicrobial peptides

[36]. Conversely, IL-22 has been shown to be dispensable for the

clearance of Lm in p35-sufficient mice [39]. Our present work

combined with other reports then suggests that, in the absence of

IL-12-mediated protective immunity, Th17 cytokines IL-17 and

IL-22 cooperatively inhibit the growth of Lm and are negatively

regulated by EBI3. Importantly, since the bacterial burden in

p352/2 mice treated with exogenous IL-17 and IL-22 was still

higher than that of wild-type mice, undefined alternative

protective mechanism may still exist.

One can assume that the difference between p352/2 mice and

p352/2EBI32/2 mice in anti-Lm immunity could be due to the

effect of IL-35, which is composed of p35 and EBI3 [40]. Given

that p352/2 mice cannot produce IL-12 and IL-35, and that

p352/2EBI32/2 mice cannot produce IL-12, IL-35 and IL-27,

the only cytokine that is lacking in the latter mice compared with

the former mice is IL-27. Recent studies have shown that the

other subunit of IL-27, IL-27p28, can be secreted in the absence

of EBI3 to act as an antagonist of gp130 [15,41,42] or

alternatively form a heterodimer with Cytokine-Like Factor 1

(p28/CLF) to promote NK and T cell activity [43]. Hence, EBI3-

deficiency may lead to the production of p28 and p28/CLF,

which may exert biological activities independently of IL-27. The

role of p28 subunit of IL-27 during host defense in the present

study is not clear. Future studies with p28-deficient mice will be

important for a complete understanding on the mechanism by

which EBI3 regulates protective immunity to intracellular

pathogens.

IL-27 has been shown to trigger preliminary Th1 responses, where

mice deficient in the IL-27 receptor (WSX-12/2; TCCR2/2) are

more susceptible to Leishmania major [12] and Lm infection [13] due to

decreased Th1 responses. On the contrary, WSX-12/2 mice

generate more IFNc-producing CD4+ T cells than wild-type mice

after infection with Toxoplasma gondii [14], indicating that IL-27 signal

is not necessary for the generation of Th1 immunity to the infection.

Therefore the effect of IL-27 on pathogen-specific Th1 response is

likely dependent on the infectious agents. It is not clear why IL-

27EBI32/2 mice in the present study did not recapitulate the

phenotype of IL-27R2/2 mice in a previous study [13]. It is possible

that the route of infection (intravenous versus subcutaneous) results in

distinct immune responses to Lm. Alternatively, it is possible that the

phenotype of EBI32/2 mice described in this study may in fact be IL-

27 independent and instead mediated through IL-27p28 [42,44,45].

Interestingly, fundamental differences have also been reported

between WSX-12/2 and EBI32/2 mice. For instance, WSX-12/2

mice exhibited enhanced liver inflammation, whereas EBI32/2 mice

showed reduced liver inflammation in the same Con A-induced

hepatitis animal model [46,47]. Moreover, while T cells from WSX-

12/2 mice produce less IFNc, T cells from EBI32/2 mice produce

higher IFNc and less IL-4 than wild-type T cells [12,13,48]. Further

study is needed to demonstrate the mechanism of these differences in

the regulation of infectious and inflammatory diseases between the

EBI3 and IL-27 receptor signaling pathways.

Collectively our findings demonstrate that the immune system

produces IL-12 to suppress bacterial growth upon infection while

Lm utilizes another host immune component, EBI3, to escape

immune surveillance. Increased susceptibility to intracellular

pathogens in patients with deficiency in IL-12 or its receptor has

been demonstrated [49,50]. Based on our findings, blockade of

EBI3 may provide a new therapeutic approach for the treatment

of infectious diseases, particularly in patients with defective IL-12

immunity.

Materials and Methods

Ethics statement
All the animal experiments were performed in accordance with

the Guide for the Care and Use of Laboratory Animals of the

National Institutes of Health and with the permission of the

American Association for the Assessment and Accreditation of

Laboratory Animal Care. The protocol was reviewed and

approved by the Institutional Animal Care and Use Committee

of MD Anderson Cancer Center (identification number: 10-04-

09833) and University of Texas Health Science Center at Houston

(identification number: HSC-AWC-12-008).

Mice
C57BL/6 and IL-12p352/2 mice were purchased from the

Jackson Laboratory. IL-27EBI32/2 mice were generated as

described previously [48]. Double-deficient mice (p352/2EBI32/2)

were obtained by crossing IL-12p352/2 and IL-27EBI32/2 mice.

IL-17Frfp-reporter mice were generated as described previously [30].

All mice were kept under specific pathogens-free condition. The

animal experiments were performed at the age of 6–12 weeks.

Stimulation of bone marrow-derived dendritic cells (BM-
DC) and macrophages (BM-M)

Bone marrow cells from femurs and tibia of C57BL/6 mice

were cultured with 10% FBS supplemented RPMI containing

GM-CSF or M-CSF for 6 days. For irradiation, log-phase cultured

Lm-Ova were exposed to 300 K rad of c-irradiation. After

extensive washing, BM-DC and BM-M cells were incubated with

the irradiated Lm-Ova at the ratio of 1:10. As controls, LPS

(100 ng/ml) and Pam3CysSK4 (Pam; 1 mg/ml) were added in the

culture. Four hours after the stimulation, cells were harvested and

resuspended in Trizol for mRNA expression analysis.

Infection with Listeria monocytogenes
An erythromycin resistant strain of Lm-Ova was grown in brain

heart infusion media supplemented with 5 mg/ml erythromycin

[51]. The bacteria were harvested at mid-log growth phase and

were intravenously injected into animals (2.56104 CFU/mouse).

In some experiments, mice were intraperitoneally administered

recombinant murine IL-17, IL-22 (Peprotech), or both (1 mg/

injection) on day 0, 2, 4 after infection. Three or seven days after

infection, spleens and livers of the infected mice were harvested.

Bacterial burdens were determined by measuring colony forming

unit, as described previously [52]. Splenocytes were stimulated

with SIINFEKL peptide or LLO190–201 peptide overnight for

intracellular cytokine staining, or 3 days for ELISA analysis [52].

In some experiments, splenocytes were resuspended in Trizol for

mRNA expression analysis.
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Antibodies used for flow cytometric analysis
The following antibodies were used for cell surface and

intracellular staining; PerCPCy5-5- or FICT-labeled anti-TCRb
(H57-597), PerCPCy5-5-labeled anti-CD4 (GK1.5), Alexa 488-

labeled anti-CD8 (5H10-1), APC-labeled anti-CD11b (M1/70)

from Biolegnd; PE- or Alexa 488-labeled anti-IFNc (XMG1.2),

PE-labeled anti-IL-17 (clone TC11-18H10), Alexa 647-labeled

anti-GranzymeB (GB11) FITC- or PerCPCy5.5-labeled anti-

NK1.1 (PK136), PerCPCy5-5-labeled anti-Ly6C (AL21) from

BD Biosciences. For intracellular staining, cells were incubated

with permeabilization buffer (BD Biosciences), and then further

stained with intracellular staining Abs described above. These cells

were analyzed by using LSRII flow cytometer (BD Bioscience) and

Flowjo software.

Real-time PCR analysis for mRNA expression
Total RNA was prepared from splenocytes with TriZol reagent

(Invitrogen). Complementary DNA (cDNA) was synthesized with

Superscript reverse transcriptase and oligo(dT) primers (Invitro-

gen), and gene expression was examined with a Bio-Rad iCycler

Optical System with iQ SYBR green real-time PCR kit (Bio-Rad

Laboratories). The data were normalized to Actb reference. The

following primer pairs were used: ActB: F-GAC GGC CAG GTC

ATC ACT ATT G and R-AGG AAG GCT GGA AAA GAG

CC; Ifng: F-GAT GCA TTC ATG AGT ATT GCC AAG T and

R-GTG GAC CAC TCG GAT GAG CTC; Il17: F-CTG GAG

GAT AAC ACT GTG AGA GT and R-TGC TGA ATG GCG

ACG GAG TTC; Il17f: F-CTG GAG GAT AAC ACT GTG

AGA GT-39 and R-TGC TGA ATG GCG ACG GAG TTC;

Il22: F-CAT GCA GGA GGT GGT ACC TT and R-CAG ACG

CAA GCA TTT CTC AG; Il10: F-ATA ACT GCA CCC ACT

TCC CAG TC and R-CCC AAG TAA CCC TTA AAG TCC

TGC; Ebi3: F-TCC CCG AGG TGC AAC TGT TCT CC and

R-GGT CCT GAG CTG ACA CCT GG. Primers for p35, p40,

p19 were described previously [53].

Adoptive transfer study
To obtain IL-17-producing CD4+ T cells specific for Lm-Ova,

we s.c. immunized IL-17Frfp-reporter mice with LLO peptide in

CFA. A week later, lymphoid cells from the draining lymph nodes

and spleen were pooled and restimulated with the same peptide in

the presence of IL-23 (50 ng/ml) and IL-1b (10 ng/ml) plus anti-

IFNc (5 mg/ml; XMG1.2) for five days. The cells were stained

with APC-labeled anti-CD4, and APC-positive and RFP-positive

cells were sorted by using FACS-Influx (BD Biosciences). 2.56105

sorted cells/mouse were intravenously injected into IL-12p352/2

mice followed by Lm-Ova inoculation and analysis of bacterial

burden, as described above.

Statistical analysis
The Student t test was used to assess the statistical values. P

values were determined, and error bars represent standard error of

the mean (SEM) or standard deviation (SD).

Supporting Information

Figure S1 Bacterial load in the spleens of p352/2 and
EBI32/2 mice after infection with L. monocytogenes.
C57BL/6 (WT) or the indicated strains of mice (n = 4–5 per

group) were intravenously infected with 2.56104 Lm-Ova on day

0. Three (A) or seven (B) days later, the bacterial burden in the

spleens of the infected mice was analyzed by measuring colony-

forming unit. Bars are mean values. Data shown are representative

of three independent experiments. *, p,0.05 and **, p,0.01 in

comparison between two indicated groups.

(PDF)

Figure S2 Bacterial load in the spleens of p352/2 mice
treated with IL-17 or IL-22. A, C57BL/6 (WT) or groups of

p352/2 mice (n = 5 per group) were intravenously infected with

2.56104 Lm-Ova on day 0. Some of the p352/2 mice were i.p.

injected with 1 mg of recombinant IL-17, IL-22, or both on day 0,

2, 4. Seven days after the infection, bacterial burden in the spleens

of the infected mice was determined by measuring colony-forming

unit. Bars are mean values. *, p,0.05 in comparison between two

indicated groups.

(PDF)

Acknowledgments

We thank Dr. Hao Shen (University of Pennsylvania) for Lm-Ova, the

FACS Core Facility at the MD Anderson Cancer Center for assistance

with cell sorting.

Author Contributions

Conceived and designed the experiments: YC CD. Performed the

experiments: YC TY BSK YZ JMR GJM SHC HL. Analyzed the data:

YC BSK YZ CD. Contributed reagents/materials/analysis tools: MB.

Wrote the paper: YC CD.

References

1. Romani L, Puccetti P, Bistoni F (1997) Interleukin-12 in infectious diseases. Clin

Microbiol Rev 10: 611–636.

2. Trinchieri G (1998) Interleukin-12: a cytokine at the interface of inflammation

and immunity. Adv Immunol 70: 83–243.

3. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, et al. (2001)

Requirement of interleukin 17 receptor signaling for lung CXC chemokine

and granulocyte colony-stimulating factor expression, neutrophil recruitment,

and host defense. J Exp Med 194: 519–527.

4. Aujla SJ, Chan YR, Zheng M, Fei M, Askew DJ, et al. (2008) IL-22 mediates mucosal

host defense against Gram-negative bacterial pneumonia. Nat Med 14: 275–281.

5. Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, et al. (2008) Interleukin-22

mediates early host defense against attaching and effacing bacterial pathogens.

Nat Med 14: 282–289.

6. Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, et al. (2009) Differential

roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial

infection and allergic responses. Immunity 30: 108–119.

7. Rudner XL, Happel KI, Young EA, Shellito JE (2007) Interleukin-23 (IL-23)-IL-

17 cytokine axis in murine Pneumocystis carinii infection. Infect Immun 75:

3055–3061.

8. Conti HR, Shen F, Nayyar N, Stocum E, Sun JN, et al. (2009) Th17 cells and

IL-17 receptor signaling are essential for mucosal host defense against oral

candidiasis. J Exp Med 206: 299–311.

9. Goriely S, Neurath MF, Goldman M (2008) How microorganisms tip the

balance between interleukin-12 family members. Nat Rev Immunol 8: 81–86.

10. Kastelein RA, Hunter CA, Cua DJ (2007) Discovery and biology of IL-23 and

IL-27: related but functionally distinct regulators of inflammation. Annu Rev

Immunol 25: 221–242.

11. Yoshida H, Miyazaki Y (2008) Regulation of immune responses by interleukin-

27. Immunol Rev 226: 234–247.

12. Yoshida H, Hamano S, Senaldi G, Covey T, Faggioni R, et al. (2001) WSX-1 is

required for the initiation of Th1 responses and resistance to L. major infection.

Immunity 15: 569–578.

13. Chen Q, Ghilardi N, Wang H, Baker T, Xie MH, et al. (2000) Development of

Th1-type immune responses requires the type I cytokine receptor TCCR.

Nature 407: 916–920.

14. Villarino A, Hibbert L, Lieberman L, Wilson E, Mak T, et al. (2003) The IL-

27R (WSX-1) is required to suppress T cell hyperactivity during infection.

Immunity 19: 645–655.

15. Stumhofer JS, Laurence A, Wilson EH, Huang E, Tato CM, et al. (2006) Interleukin

27 negatively regulates the development of interleukin 17-producing T helper cells

during chronic inflammation of the central nervous system. Nat Immunol 7: 937–945.

16. Batten M, Li J, Yi S, Kljavin NM, Danilenko DM, et al. (2006) Interleukin 27

limits autoimmune encephalomyelitis by suppressing the development of

interleukin 17-producing T cells. Nat Immunol 7: 929–936.

EBI3-Mediated Immune Evasion by L. monocytogenes

PLOS Pathogens | www.plospathogens.org 8 September 2013 | Volume 9 | Issue 9 | e1003628



17. Hirahara K, Ghoreschi K, Yang XP, Takahashi H, Laurence A, et al. (2012)

Interleukin-27 Priming of T Cells Controls IL-17 Production In trans via

Induction of the Ligand PD-L1. Immunity 36: 1017–1030.

18. Awasthi A, Carrier Y, Peron JP, Bettelli E, Kamanaka M, et al. (2007) A

dominant function for interleukin 27 in generating interleukin 10-producing

anti-inflammatory T cells. Nat Immunol 8: 1380–1389.

19. Fitzgerald DC, Zhang GX, El-Behi M, Fonseca-Kelly Z, Li H, et al. (2007)

Suppression of autoimmune inflammation of the central nervous system by

interleukin 10 secreted by interleukin 27-stimulated T cells. Nat Immunol 8:

1372–1379.

20. Stumhofer JS, Silver JS, Laurence A, Porrett PM, Harris TH, et al. (2007)

Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin

10. Nat Immunol 8: 1363–1371.

21. Pamer EG (2004) Immune responses to Listeria monocytogenes. Nat Rev

Immunol 4: 812–823.

22. Hiromatsu K, Yoshikai Y, Matsuzaki G, Ohga S, Muramori K, et al. (1992) A

protective role of gamma/delta T cells in primary infection with Listeria

monocytogenes in mice. J Exp Med 175: 49–56.

23. Hamada S, Umemura M, Shiono T, Tanaka K, Yahagi A, et al. (2008) IL-17A

produced by gammadelta T cells plays a critical role in innate immunity against

listeria monocytogenes infection in the liver. J Immunol 181: 3456–3463.

24. Meeks KD, Sieve AN, Kolls JK, Ghilardi N, Berg RE (2009) IL-23 is required

for protection against systemic infection with Listeria monocytogenes. J Immunol

183: 8026–8034.

25. Pope C, Kim SK, Marzo A, Masopust D, Williams K, et al. (2001) Organ-

specific regulation of the CD8 T cell response to Listeria monocytogenes

infection. Journal of immunology 166: 3402–3409.

26. Datta SK, Okamoto S, Hayashi T, Shin SS, Mihajlov I, et al. (2006) Vaccination

with irradiated Listeria induces protective T cell immunity. Immunity 25: 143–

152.

27. Pearce EL, Shen H (2007) Generation of CD8 T cell memory is regulated by IL-

12. J Immunol 179: 2074–2081.

28. Kang SJ, Liang HE, Reizis B, Locksley RM (2008) Regulation of hierarchical

clustering and activation of innate immune cells by dendritic cells. Immunity 29:

819–833.

29. Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG (2003)

TNF/iNOS-producing dendritic cells mediate innate immune defense against

bacterial infection. Immunity 19: 59–70.

30. Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, et al. (2008) Molecular

antagonism and plasticity of regulatory and inflammatory T cell programs.

Immunity 29: 44–56.

31. Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, et al. (2009) Critical

regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity

30: 576–587.

32. Martin-Orozco N, Chung Y, Chang SH, Wang YH, Dong C (2009) Th17 cells

promote pancreatic inflammation but only induce diabetes efficiently in

lymphopenic hosts after conversion into Th1 cells. European journal of

immunology 39: 216–224.

33. Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y, et al. (2011) Fate mapping

of IL-17-producing T cells in inflammatory responses. Nature immunology 12:

255–263.

34. Xu S, Han Y, Xu X, Bao Y, Zhang M, et al. (2010) IL-17A-producing

gammadeltaT cells promote CTL responses against Listeria monocytogenes

infection by enhancing dendritic cell cross-presentation. Journal of immunology

185: 5879–5887.

35. Chung Y, Yang X, Chang SH, Ma L, Tian Q, et al. (2006) Expression and

regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes. Cell Res 16:
902–907.

36. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, et al.

(2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and
cooperatively enhance expression of antimicrobial peptides. J Exp Med 203:

2271–2279.
37. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, et al. (2004)

Autophagy is a defense mechanism inhibiting BCG and Mycobacterium

tuberculosis survival in infected macrophages. Cell 119: 753–766.
38. Chang YP, Chen CL, Chen SO, Lin YS, Tsai CC, et al. (2011) Autophagy

facilitates an IFN-gamma response and signal transduction. Microbes and
infection/Institut Pasteur 13: 888–894.

39. Graham AC, Carr KD, Sieve AN, Indramohan M, Break TJ, et al. (2011) IL-22
production is regulated by IL-23 during Listeria monocytogenes infection but is

not required for bacterial clearance or tissue protection. PloS one 6: e17171.

40. Collison LW, Vignali DA (2008) Interleukin-35: odd one out or part of the
family? Immunol Rev 226: 248–262.

41. Pflanz S, Timans JC, Cheung J, Rosales R, Kanzler H, et al. (2002) IL-27, a
heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation

of naive CD4(+) T cells. Immunity 16: 779–790.

42. Stumhofer JS, Tait ED, Quinn WJ, . (2010) A role for IL-27p28 as an antagonist
of gp130-mediated signaling. Nat Immunol 11: 1119–1126.

43. Crabe S, Guay-Giroux A, Tormo AJ, Duluc D, Lissilaa R, et al. (2009) The IL-
27 p28 subunit binds cytokine-like factor 1 to form a cytokine regulating NK and

T cell activities requiring IL-6R for signaling. Journal of immunology 183:
7692–7702.

44. Crabe S, Guay-Giroux A, Tormo AJ, Duluc D, Lissilaa R, et al. (2009) The IL-

27 p28 subunit binds cytokine-like factor 1 to form a cytokine regulating NK and
T cell activities requiring IL-6R for signaling. J Immunol 183: 7692–7702.

45. Shimozato O, Sato A, Kawamura K, Chiyo M, Ma G, et al. (2009) The secreted
form of p28 subunit of interleukin (IL)-27 inhibits biological functions of IL-27

and suppresses anti-allogeneic immune responses. Immunology 128: e816–825.

46. Yamanaka A, Hamano S, Miyazaki Y, Ishii K, Takeda A, et al. (2004)
Hyperproduction of proinflammatory cytokines by WSX-1-deficient NKT cells

in concanavalin A-induced hepatitis. Journal of immunology 172: 3590–3596.
47. Siebler J, Wirtz S, Frenzel C, Schuchmann M, Lohse AW, et al. (2008) Cutting

edge: a key pathogenic role of IL-27 in T cell- mediated hepatitis. Journal of
immunology 180: 30–33.

48. Nieuwenhuis EE, Neurath MF, Corazza N, Iijima H, Trgovcich J, et al. (2002)

Disruption of T helper 2-immune responses in Epstein-Barr virus-induced gene
3-deficient mice. Proc Natl Acad Sci U S A 99: 16951–16956.

49. Filipe-Santos O, Bustamante J, Chapgier A, Vogt G, de Beaucoudrey L, et al.
(2006) Inborn errors of IL-12/23- and IFN-gamma-mediated immunity:

molecular, cellular, and clinical features. Semin Immunol 18: 347–361.

50. Picard C, Fieschi C, Altare F, Al-Jumaah S, Al-Hajjar S, et al. (2002) Inherited
interleukin-12 deficiency: IL12B genotype and clinical phenotype of 13 patients

from six kindreds. Am J Hum Genet 70: 336–348.
51. Sun JC, Bevan MJ (2003) Defective CD8 T cell memory following acute

infection without CD4 T cell help. Science 300: 339–342.
52. Chung Y, Lee YH, Zhang Y, Martin-Orozco N, Yamazaki T, et al. (2012) T

cells and T cell tumors efficiently generate antigen-specific cytotoxic T cell

immunity when modified with an NKT ligand. Oncoimmunology 1: 141–151.
53. Mise-Omata S, Kuroda E, Niikura J, Yamashita U, Obata Y, et al. (2007) A

proximal kappaB site in the IL-23 p19 promoter is responsible for RelA- and c-
Rel-dependent transcription. J Immunol 179: 6596–6603.

EBI3-Mediated Immune Evasion by L. monocytogenes

PLOS Pathogens | www.plospathogens.org 9 September 2013 | Volume 9 | Issue 9 | e1003628


