534 research outputs found
Quantum Theory of Noncommutative Fields
Generalizing the noncommutative harmonic oscillator construction, we propose
a new extension of quantum field theory based on the concept of "noncommutative
fields". Our description permits to break the usual particle-antiparticle
degeneracy at the dispersion relation level and introduces naturally an
ultraviolet and an infrared cutoff. Phenomenological bounds for these new
energy scales are given.Comment: LaTeX file, JHEP3.cls, subequations.sty; 12 pages, no figures. Final
version published in JHEP with some references adde
Quantum Chaos in Open versus Closed Quantum Dots: Signatures of Interacting Particles
This paper reviews recent studies of mesoscopic fluctuations in transport
through ballistic quantum dots, emphasizing differences between conduction
through open dots and tunneling through nearly isolated dots. Both the open
dots and the tunnel-contacted dots show random, repeatable conductance
fluctuations with universal statistical proper-ties that are accurately
characterized by a variety of theoretical models including random matrix
theory, semiclassical methods and nonlinear sigma model calculations. We apply
these results in open dots to extract the dephasing rate of electrons within
the dot. In the tunneling regime, electron interaction dominates transport
since the tunneling of a single electron onto a small dot may be sufficiently
energetically costly (due to the small capacitance) that conduction is
suppressed altogether. How interactions combine with quantum interference are
best seen in this regime.Comment: 15 pages, 11 figures, PDF 2.1 format, to appear in "Chaos, Solitons &
Fractals
The second and third Sonine coefficients of a freely cooling granular gas revisited
In its simplest statistical-mechanical description, a granular fluid can be
modeled as composed of smooth inelastic hard spheres (with a constant
coefficient of normal restitution ) whose velocity distribution
function obeys the Enskog-Boltzmann equation. The basic state of a granular
fluid is the homogeneous cooling state, characterized by a homogeneous,
isotropic, and stationary distribution of scaled velocities, .
The behavior of in the domain of thermal velocities ()
can be characterized by the two first non-trivial coefficients ( and
) of an expansion in Sonine polynomials. The main goals of this paper are
to review some of the previous efforts made to estimate (and measure in
computer simulations) the -dependence of and , to report new
computer simulations results of and for two-dimensional systems,
and to investigate the possibility of proposing theoretical estimates of
and with an optimal compromise between simplicity and accuracy.Comment: 12 pages, 5 figures; v2: minor change
Navier-Stokes transport coefficients of -dimensional granular binary mixtures at low density
The Navier-Stokes transport coefficients for binary mixtures of smooth
inelastic hard disks or spheres under gravity are determined from the Boltzmann
kinetic theory by application of the Chapman-Enskog method for states near the
local homogeneous cooling state. It is shown that the Navier-Stokes transport
coefficients are not affected by the presence of gravity. As in the elastic
case, the transport coefficients of the mixture verify a set of coupled linear
integral equations that are approximately solved by using the leading terms in
a Sonine polynomial expansion. The results reported here extend previous
calculations [V. Garz\'o and J. W. Dufty, Phys. Fluids {\bf 14}, 1476 (2002)]
to an arbitrary number of dimensions. To check the accuracy of the
Chapman-Enskog results, the inelastic Boltzmann equation is also numerically
solved by means of the direct simulation Monte Carlo method to evaluate the
diffusion and shear viscosity coefficients for hard disks. The comparison shows
a good agreement over a wide range of values of the coefficients of restitution
and the parameters of the mixture (masses and sizes).Comment: 6 figures, to be published in J. Stat. Phy
Gamma-Ray Bursts: The Underlying Model
A pedagogical derivation is presented of the ``fireball'' model of gamma-ray
bursts, according to which the observable effects are due to the dissipation of
the kinetic energy of a relativistically expanding wind, a ``fireball.'' The
main open questions are emphasized, and key afterglow observations, that
provide support for this model, are briefly discussed. The relativistic outflow
is, most likely, driven by the accretion of a fraction of a solar mass onto a
newly born (few) solar mass black hole. The observed radiation is produced once
the plasma has expanded to a scale much larger than that of the underlying
``engine,'' and is therefore largely independent of the details of the
progenitor, whose gravitational collapse leads to fireball formation. Several
progenitor scenarios, and the prospects for discrimination among them using
future observations, are discussed. The production in gamma- ray burst
fireballs of high energy protons and neutrinos, and the implications of burst
neutrino detection by kilometer-scale telescopes under construction, are
briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture
Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Inclusive production of and mesons in charged current interactions
The inclusive production of the meson resonances ,
and in neutrino-nucleus charged current interactions has been
studied with the NOMAD detector exposed to the wide band neutrino beam
generated by 450 GeV protons at the CERN SPS. For the first time the
meson is observed in neutrino interactions. The statistical
significance of its observation is 6 standard deviations. The presence of
in neutrino interactions is reliably established. The average
multiplicity of these three resonances is measured as a function of several
kinematic variables. The experimental results are compared to the
multiplicities obtained from a simulation based on the Lund model. In addition,
the average multiplicity of in antineutrino - nucleus
interactions is measured.Comment: 23 pages, 14 figures, 8 tables. To appear in Nucl. Phys.
Search for the exotic resonance in the NOMAD experiment
A search for exotic Theta baryon via Theta -> proton +Ks decay mode in the
NOMAD muon neutrino DIS data is reported. The special background generation
procedure was developed. The proton identification criteria are tuned to
maximize the sensitivity to the Theta signal as a function of xF which allows
to study the Theta production mechanism. We do not observe any evidence for the
Theta state in the NOMAD data. We provide an upper limit on Theta production
rate at 90% CL as 2.13 per 1000 of neutrino interactions.Comment: Accepted to European Physics Journal
Observation of the Ankle and Evidence for a High-Energy Break in the Cosmic Ray Spectrum
We have measured the cosmic ray spectrum at energies above eV using
the two air fluorescence detectors of the High Resolution Fly's Eye experiment
operating in monocular mode. We describe the detector, PMT and atmospheric
calibrations, and the analysis techniques for the two detectors. We fit the
spectrum to models describing galactic and extragalactic sources. Our measured
spectrum gives an observation of a feature known as the ``ankle'' near eV, and strong evidence for a suppression near eV.Comment: 14 pages, 9 figures. To appear in Physics Letters B. Accepted versio
Search for heavy neutrinos mixing with tau neutrinos
We report on a search for heavy neutrinos (\nus) produced in the decay
D_s\to \tau \nus at the SPS proton target followed by the decay \nudecay in
the NOMAD detector. Both decays are expected to occur if \nus is a component
of .\
From the analysis of the data collected during the 1996-1998 runs with
protons on target, a single candidate event consistent with
background expectations was found. This allows to derive an upper limit on the
mixing strength between the heavy neutrino and the tau neutrino in the \nus
mass range from 10 to 190 . Windows between the SN1987a and Big Bang
Nucleosynthesis lower limits and our result are still open for future
experimental searches. The results obtained are used to constrain an
interpretation of the time anomaly observed in the KARMEN1 detector.\Comment: 20 pages, 7 figures, a few comments adde
- …
