131 research outputs found

    Introducing Global Peat-Specific Temperature and pH Calibrations Based on brGDGT Bacterial Lipids

    Get PDF
    Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane-spanning lipids from Bacteria and Archaea that are ubiquitous in a range of natural archives and especially abundant in peat. Previous work demonstrated that the distribution of bacterial branched GDGTs (brGDGTs) in mineral soils is correlated to environmental factors such as mean annual air temperature (MAAT) and soil pH. However, the influence of these parameters on brGDGT distributions in peat is largely unknown. Here we investigate the distribution of brGDGTs in 470 samples from 96 peatlands around the world with a broad mean annual air temperature (−8 to 27 °C) and pH (3–8) range and present the first peat-specific brGDGT-based temperature and pH calibrations. Our results demonstrate that the degree of cyclisation of brGDGTs in peat is positively correlated with pH, pH = 2.49 × CBTpeat + 8.07 (n = 51, R2 = 0.58, RMSE = 0.8) and the degree of methylation of brGDGTs is positively correlated with MAAT, MAATpeat (°C) = 52.18 × MBT5me′ − 23.05 (n = 96, R2 = 0.76, RMSE = 4.7 °C). These peat-specific calibrations are distinct from the available mineral soil calibrations. In light of the error in the temperature calibration (∼4.7 °C), we urge caution in any application to reconstruct late Holocene climate variability, where the climatic signals are relatively small, and the duration of excursions could be brief. Instead, these proxies are well-suited to reconstruct large amplitude, longer-term shifts in climate such as deglacial transitions. Indeed, when applied to a peat deposit spanning the late glacial period (∼15.2 kyr), we demonstrate that MAATpeat yields absolute temperatures and relative temperature changes that are consistent with those from other proxies. In addition, the application of MAATpeat to fossil peat (i.e. lignites) has the potential to reconstruct terrestrial climate during the Cenozoic. We conclude that there is clear potential to use brGDGTs in peats and lignites to reconstruct past terrestrial climate. © 2017 The Author

    An application of kernel methods to variety identification based on SSR markers genetic fingerprinting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In crop production systems, genetic markers are increasingly used to distinguish individuals within a larger population based on their genetic make-up. Supervised approaches cannot be applied directly to genotyping data due to the specific nature of those data which are neither continuous, nor nominal, nor ordinal but only partially ordered. Therefore, a strategy is needed to encode the polymorphism between samples such that known supervised approaches can be applied. Moreover, finding a minimal set of molecular markers that have optimal ability to discriminate, for example, between given groups of varieties, is important as the genotyping process can be costly in terms of laboratory consumables, labor, and time. This feature selection problem also needs special care due to the specific nature of the data used.</p> <p>Results</p> <p>An approach encoding SSR polymorphisms in a positive definite kernel is presented, which then allows the usage of any kernel supervised method. The polymorphism between the samples is encoded through the Nei-Li genetic distance, which is shown to define a positive definite kernel between the genotyped samples. Additionally, a greedy feature selection algorithm for selecting SSR marker kits is presented to build economical and efficient prediction models for discrimination. The algorithm is a filter method and outperforms other filter methods adapted to this setting. When combined with kernel linear discriminant analysis or kernel principal component analysis followed by linear discriminant analysis, the approach leads to very satisfactory prediction models.</p> <p>Conclusions</p> <p>The main advantage of the approach is to benefit from a flexible way to encode polymorphisms in a kernel and when combined with a feature selection algorithm resulting in a few specific markers, it leads to accurate and economical identification models based on SSR genotyping.</p

    Identification of Nicotiana tabacum Linkage Group Corresponding to the Q Chromosome Gene(s) Involved in Hybrid Lethality

    Get PDF
    BACKGROUND: A linkage map consisting of 24 linkage groups has been constructed using simple sequence repeat (SSR) markers in Nicotiana tabacum. However, chromosomal assignments of all linkage groups have not yet been made. The Q chromosome in N. tabacum encodes a gene or genes triggering hybrid lethality, a phenomenon that causes death of hybrids derived from some crosses. METHODOLOGY/PRINCIPAL FINDINGS: We identified a linkage group corresponding to the Q chromosome using an interspecific cross between an N. tabacum monosomic line lacking the Q chromosome and N. africana. N. ingulba yielded inviable hybrids after crossing with N. tabacum. SSR markers on the identified linkage group were used to analyze hybrid lethality in this cross. The results implied that one or more genes on the Q chromosome are responsible for hybrid lethality in this cross. Furthermore, the gene(s) responsible for hybrid lethality in the cross N. tabacum × N. africana appear to be on the region of the Q chromosome to which SSR markers PT30342 and PT30365 map. CONCLUSIONS/SIGNIFICANCE: Linkage group 11 corresponded to the Q chromosome. We propose a new method to correlate linkage groups with chromosomes in N. tabacum

    A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development

    Get PDF
    Tobacco (Nicotiana tabacum L.) is a species in the large family of the Solanaceae and is important as an agronomic crop and as a model system in plant biotechnology. Despite its importance, only limited molecular marker resources are available that can be used for genome analysis, genetic mapping and breeding. We report here on the development and characterization of 5,119 new and functional microsatellite markers and on the generation of a high-resolution genetic map for the tetraploid tobacco genome. The genetic map was generated using an F2 mapping population derived from the intervarietal cross of Hicks Broadleaf × Red Russian and merges the polymorphic markers from this new set with those from a smaller set previously used to produce a lower density map. The genetic map described here contains 2,317 microsatellite markers and 2,363 loci, resulting in an average distance between mapped microsatellite markers which is less than 2 million base pairs or 1.5 cM. With this new and expanded marker resource, a sufficient number of markers are now available for multiple applications ranging from tobacco breeding to comparative genome analysis. The genetic map of tobacco is now comparable in marker density and resolution with the best characterized genomes of the Solanaceae: tomato and potato

    Simultaneous Determination of Various Isothiocyanates by RP-LC Following Precolumn Derivatization with Mercaptoethanol

    Get PDF
    Numerous isothiocyanates (ITCs) are poorly soluble in water which causes their precipitation in aqueous mobile phases used in reversed phase liquid chromatography (RP-LC), thus impacting the accuracy of the quantification. By comparing the amounts of ITCs injected and released from the column, losses could be estimated at 5–32% depending on polarities and concentrations. Results could be dramatically improved in terms of separation and quantification using RP-LC with a mercaptoethanol precolumn derivatization aimed at avoiding ITCs precipitation. The cancer chemoprotective allyl-ITC and sulforaphane were found in cabbage extracts at 1.2 and 2.7 μg g−1 fresh weight, respectively

    Medication knowledge, certainty, and risk of errors in health care: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medication errors are often involved in reported adverse events. Drug therapy, prescribed by physicians, is mostly carried out by nurses, who are expected to master all aspects of medication. Research has revealed the need for improved knowledge in drug dose calculation, and medication knowledge as a whole is poorly investigated. The purpose of this survey was to study registered nurses' medication knowledge, certainty and estimated risk of errors, and to explore factors associated with good results.</p> <p>Methods</p> <p>Nurses from hospitals and primary health care establishments were invited to carry out a multiple-choice test in pharmacology, drug management and drug dose calculations (score range 0-14). Self-estimated certainty in each answer was recorded, graded from 0 = very uncertain to 3 = very certain. Background characteristics and sense of coping were recorded. Risk of error was estimated by combining knowledge and certainty scores. The results are presented as mean (±SD).</p> <p>Results</p> <p>Two-hundred and three registered nurses participated (including 16 males), aged 42.0 (9.3) years with a working experience of 12.4 (9.2) years. Knowledge scores in pharmacology, drug management and drug dose calculations were 10.3 (1.6), 7.5 (1.6), and 11.2 (2.0), respectively, and certainty scores were 1.8 (0.4), 1.9 (0.5), and 2.0 (0.6), respectively. Fifteen percent of the total answers showed a high risk of error, with 25% in drug management. Independent factors associated with high medication knowledge were working in hospitals (p < 0.001), postgraduate specialization (p = 0.01) and completion of courses in drug management (p < 0.01).</p> <p>Conclusions</p> <p>Medication knowledge was found to be unsatisfactory among practicing nurses, with a significant risk for medication errors. The study revealed a need to improve the nurses' basic knowledge, especially when referring to drug management.</p

    Lead content and isotopic composition in submound and recent soils of the Volga upland

    Get PDF
    Literature data on the historical reconstructions of the atmospheric lead deposition in Europe and the isotopic composition of the ores that are potential sources of the anthropogenic lead in the atmospheric deposition in the lower Volga steppes during different time periods have been compiled. The effect of the increasing anthropogenic lead deposition recorded since the Bronze Age on the level of soil contamination has been investigated. For the first time paleosol buried under a burial mound of the Bronze Age has been used as a reference point to assess of the current contamination level. The contents and isotopic compositions of the mobile and total lead have been determined in submound paleosols of different ages and their recent remote and roadside analogues. An increase in the content and fraction of the mobile lead and a shift of its isotopic composition toward less radiogenic values (typical for lead from the recent anthropogenic sources) has been revealed when going from a Bronze-Age paleosol to a recent soil. In the Bronze-Age soil, the isotopic composition of the mobile lead is inherited from the parent rock to a greater extent than in the modern soils, where the lead is enriched with the less radiogenic component. The effect of the anthropogenic component is traced in the analysis of the mobile lead, but it is barely visible for the total lead. An exception is provided by the recent roadside soils characterized by increased contents and the significantly less radiogenic isotopic composition of the mobile and total lead

    Peat bogs in northern Alberta, Canada reveal decades of declining atmospheric Pb contamination

    Get PDF
    Peat cores were collected from six bogs in northern Alberta to reconstruct changes in the atmospheric deposition of Pb, a valuable tracer of human activities. In each profile, the maximum Pb enrichment is found well below the surface. Radiometric age dating using three independent approaches (14C measurements of plant macrofossils combined with the atmospheric bomb pulse curve, plus 210Pb confirmed using the fallout radionuclides 137Cs and 241Am) showed that Pb contamination has been in decline for decades. Today, the surface layers of these bogs are comparable in composition to the "cleanest" peat samples ever found in the Northern Hemisphere, from a Swiss bog ~ 6000 to 9000years old. The lack of contemporary Pb contamination in the Alberta bogs is testimony to successful international efforts of the past decades to reduce anthropogenic emissions of this potentially toxic metal to the atmosphere
    corecore