281 research outputs found
The Variscan gabbros from the Spanish Central System: A case for crustal recycling in the sub-continental lithospheric mantle?
The gabbroic intrusions that crop out along the Spanish Central System (SCS) are geochemically
heterogeneous, including primitive and evolved rocks. Differentiation is mainly related to fractionation of
Cr-spinel and olivine, but mixing with coeval granitic magmas or crustal assimilation may have also played a
role in the evolution of the most differentiated rocks. The most primitive uncontaminated gabbros show arclike
trace element chondrite and primitive-mantle normalised patterns, characterised by large ion lithophile
elements (LILE)-light rare earth elements (LREE) enrichment, Sr and Pb positive and Nb–Ta–Ti negative
anomalies. However, paleogeographic constraints suggest that the SCS was located far from subduction
zones, so these geochemical signatures could be better explained by a recycling of continental crustal
components within the mantle. The most primitive SCS gabbros expand the Sr–Nd isotopic compositional
range of the Variscan basic magmatism in the Central Iberian Zone to more depleted values. This reflects a
heterogeneous sub-continental lithospheric mantle under central Spain ranging from a depleted mantle
(εNd=+3.1, 87Sr/86Sr=0.704) towards an isotopically enriched component (εNd=−1.6, 87Sr/
86Sr=0.706). Geochemical modelling suggests that mantle enrichment could be explained by minor lower
crustal metapelitic granulite contamination (~2%). Additionally, the Sr–Nd–Pb isotopic ratios of the most
primitive gabbros match the composition of the European subcontinental lithospheric mantle recorded in
ultramafic xenoliths from western and central Europe
Contrasting crustal sources for peraluminous granites of the segmented Montes de Toledo Batholith (Iberian Variscan Belt)
The Variscan Montes de Toledo Batholith (MTB) is an E–W linear array of peraluminous granite plutons which is chemically
segmented. The study is focused on the western segment of the MTB (W-MTB), mainly composed of granites
with slightly lower CaO and higher P2O5 contents than associated eastern plutonic units and nearby S-type granites,
giving them a more pronounced peraluminous nature. The chemical contrast is also observed in isotopic composition,
especially in radiogenic Nd and Pb ratios. The W-MTB granites have higher initial εNd (–5.0 to –5.9) and lower 206Pb/204Pb
and 208Pb/204Pb ratios than peraluminous types from the E-MTB segment. A mixed pelitic–greywackeous derivation from
regional Neoproterozoic formations is suggested, whereas lower crustal and meta-igneous sources were involved in the
origin of the easternmost MTB granites. The presence of igneous muscovite together with coexisting andalusite and
sillimanite in some of the studied granites suggests that solidus was reached at 650–700 ºC and depth corresponding to
the pressure of 2–3 kbar
The chorioallantoic membrane (CAM) assay for the study of human bone regeneration: a refinement animal model for tissue engineering.
Biomaterial development for tissue engineering applications is rapidly increasing but necessitates efficacy and safety testing prior to clinical application. Current in vitro and in vivo models hold a number of limitations, including expense, lack of correlation between animal models and human outcomes and the need to perform invasive procedures on animals; hence requiring new predictive screening methods. In the present study we tested the hypothesis that the chick embryo chorioallantoic membrane (CAM) can be used as a bioreactor to culture and study the regeneration of human living bone. We extracted bone cylinders from human femoral heads, simulated an injury using a drill-hole defect, and implanted the bone on CAM or in vitro control-culture. Micro-computed tomography (?CT) was used to quantify the magnitude and location of bone volume changes followed by histological analyses to assess bone repair. CAM blood vessels were observed to infiltrate the human bone cylinder and maintain human cell viability. Histological evaluation revealed extensive extracellular matrix deposition in proximity to endochondral condensations (Sox9+) on the CAM-implanted bone cylinders, correlating with a significant increase in bone volume by ?CT analysis (p?<?0.01). This human-avian system offers a simple refinement model for animal research and a step towards a humanized in vivo model for tissue engineering
Structure-based discovery of novel US28 small molecule ligands with different modes of action
The human cytomegalovirus-encoded G protein-coupled receptor US28 is a constitutively active receptor, which can recognize various chemokines. Despite the recent determination of its 2.9 Å crystal structure, potent and US28-specific tool compounds are still scarce. Here, we used structural information from a refined US28:VUF2274 complex for virtual screening of > 12 million commercially available small molecule compounds. Using a combined receptor- and ligand-based approach, we tested 98 of the top 0.1% ranked compounds, revealing novel chemotypes as compared to the ~1.45 million known ligands in the ChEMBL database. Two compounds were confirmed as agonist and inverse agonist, respectively, in both IP accumulation and Ca(2+) mobilization assays. The screening setup presented in this work is computationally inexpensive and therefore particularly useful in an academic setting as it enables simultaneous testing in binding as well as in different functional assays and/or species without actual chemical synthesis. This article is protected by copyright. All rights reserved.</p
Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis
Background: Infections due to antibiotic-resistant bacteria are threatening modern health care. However, estimating their incidence, complications, and attributable mortality is challenging. We aimed to estimate the burden of infections caused by antibiotic-resistant bacteria of public health concern in countries of the EU and European Economic Area (EEA) in 2015, measured in number of cases, attributable deaths, and disability-adjusted life-years (DALYs).
Methods: We estimated the incidence of infections with 16 antibiotic resistance–bacterium combinations from European Antimicrobial Resistance Surveillance Network (EARS-Net) 2015 data that was country-corrected for population coverage. We multiplied the number of bloodstream infections (BSIs) by a conversion factor derived from the European Centre for Disease Prevention and Control point prevalence survey of health-care-associated infections in European acute care hospitals in 2011–12 to estimate the number of non-BSIs. We developed disease outcome models for five types of infection on the basis of systematic reviews of the literature.
Findings: From EARS-Net data collected between Jan 1, 2015, and Dec 31, 2015, we estimated 671 689 (95% uncertainty interval [UI] 583 148–763 966) infections with antibiotic-resistant bacteria, of which 63·5% (426 277 of 671 689) were associated with health care. These infections accounted for an estimated 33 110 (28 480–38 430) attributable deaths and 874 541 (768 837–989 068) DALYs. The burden for the EU and EEA was highest in infants (aged <1 year) and people aged 65 years or older, had increased since 2007, and was highest in Italy and Greece.
Interpretation: Our results present the health burden of five types of infection with antibiotic-resistant bacteria expressed, for the first time, in DALYs. The estimated burden of infections with antibiotic-resistant bacteria in the EU and EEA is substantial compared with that of other infectious diseases, and has increased since 2007. Our burden estimates provide useful information for public health decision-makers prioritising interventions for infectious diseases
Exploring the GLP-1-GLP-1R axis in porcine pancreas and gastrointestinal tract in vivo by ex vivo autoradiography
Introduction Glucagon-like peptide-1 (GLP-1) increases insulin secretion from pancreatic beta-cells and GLP-1 receptor (GLP-1R) agonists are widely used as treatment for type 2 diabetes mellitus. Studying occupancy of the GLP-1R in various tissues is challenging due to lack of quantitative, repeatable assessments of GLP-1R density. The present study aimed to describe the quantitative distribution of GLP-1Rs and occupancy by endogenous GLP-1 during oral glucose tolerance test (OGTT) in pigs, a species that is used in biomedical research to model humans.Research design and methods GLP-1R distribution and occupancy were measured in pancreas and gastrointestinal tract by ex vivo autoradiography using the GLP-1R-specific radioligand Lu-177-exendin-4 in two groups of pigs, control or bottle-fed an oral glucose load. Positron emission tomography (PET) data from pigs injected with Ga-68-exendin-4 in a previous study were used to retrieve data on biodistribution of GLP-1R in the gastrointestinal tract.Results High homogenous uptake of Lu-177-exendin-4 was found in pancreas, and even higher uptake in areas of duodenum. Low uptake of Lu-177-exendin-4 was found in stomach, jejunum, ileum and colon. During OGTT, there was no increase in plasma GLP-1 concentrations and occupancy of GLP-1Rs was low. The ex vivo autoradiography results were highly consistent with to the biodistribution of Ga-68-exendin-4 in pigs scanned by PET.Conclusion We identified areas with similarities as well as important differences regarding GLP-1R distribution and occupancy in pigs compared with humans. First, there was strong ligand binding in the exocrine pancreas in islets. Second, GLP-1 secretion during OGTT is minimal and GLP-1 might not be an important incretin in pigs under physiological conditions. These findings offer new insights on the relevance of porcine diabetes models
Harnessing nanotopography to enhance osseointegration of clinical orthopredic titanium implants- an in Vitro and in Vivo analysis
Despite technological advancements, further innovations in the field of orthopedics and bone regeneration are essential to meet the rising demands of an increasing aging population and associated issues of disease, injury and trauma. Nanotopography provides new opportunities for novel implant surface modifications and promises to deliver further improvements in implant performance. However, the technical complexities of nanotopography fabrication and surface analysis have precluded identification of the optimal surface features to trigger osteogenesis. We herein detail the osteoinductive potential of discrete nanodot and nanowire nanotopographies. We have examined the ability of modified titanium and titanium alloy (Ti64) surfaces to induce bone-specific gene activation and extracellular matrix protein expression in human skeletal stem cells (SSCs) in vitro, and de novo osteogenic response within a murine calvarial model in vivo. This study provides evidence of enhanced osteogenic response to nanowires 300 surface modifications, with important implications for clinical orthopedic application
Human cytomegalovirus manipulation of latently infected cells.
Primary infection with human cytomegalovirus (HCMV) results in the establishment of a lifelong infection of the host which is aided by the ability of HCMV to undergo a latent infection. One site of HCMV latency in vivo is in haematopoietic progenitor cells, resident in the bone marrow, with genome carriage and reactivation being restricted to the cells of the myeloid lineage. Until recently, HCMV latency has been considered to be relatively quiescent with the virus being maintained essentially as a "silent partner" until conditions are met that trigger reactivation. However, advances in techniques to study global changes in gene expression have begun to show that HCMV latency is a highly active process which involves expression of specific latency-associated viral gene products which orchestrate major changes in the latently infected cell. These changes are argued to help maintain latent infection and to modulate the cellular environment to the benefit of latent virus. In this review, we will discuss these new findings and how they impact not only on our understanding of the biology of HCMV latency but also how they could provide tantalising glimpses into mechanisms that could become targets for the clearance of latent HCMV
Differential Ligand Binding to a Human Cytomegalovirus Chemokine Receptor Determines Cell Type–Specific Motility
While most chemokine receptors fail to cross the chemokine class boundary with respect to the ligands that they bind, the human cytomegalovirus (HCMV)-encoded chemokine receptor US28 binds multiple CC-chemokines and the CX3C-chemokine Fractalkine. US28 binding to CC-chemokines is both necessary and sufficient to induce vascular smooth muscle cell (SMC) migration in response to HCMV infection. However, the function of Fractalkine binding to US28 is unknown. In this report, we demonstrate that Fractalkine binding to US28 not only induces migration of macrophages but also acts to inhibit RANTES-mediated SMC migration. Similarly, RANTES inhibits Fractalkine-mediated US28 migration in macrophages. While US28 binding of both RANTES and Fractalkine activate FAK and ERK-1/2, RANTES signals through Gα12 and Fractalkine through Gαq. These findings represent the first example of differential chemotactic signaling via a multiple chemokine family binding receptor that results in migration of two different cell types. Additionally, the demonstration that US28-mediated chemotaxis is both ligand-specific and cell type–specific has important implications in the role of US28 in HCMV pathogenesis
- …
