8 research outputs found

    Optics and Quantum Electronics

    Get PDF
    Contains table of contents for Section 2 and reports on eleven research projects.Joint Services Electronics Program Contract DAAL03-89-C-0001National Science Foundation Grant EET 87-00474U.S. Air Force - Office of Scientific Research Contract F49620-88-C-0089Charles S. Draper Laboratory Contract DL-H-404179National Center for Integrated PhotonicsNational Science Foundation Grant ECS 87-18417NEC Research InstituteNational Science Foundation Grant ECS 85-52701Medical Free Electron Laser Program Contract N00014-86-K-0117National Institutes of Health Grant 5-RO1-GM35459Lawrence Livermore National Laboratory Contract B048704U.S. Department of Energy Grant DE-FG02-89-ER14012Columbia University Contract P016310

    Optics and Quantum Electronics

    Get PDF
    Contains table of contents for Section 3 and reports on twenty-one research projects.Joint Services Electronics Program Contract DAAL03-89-C-0001Joint Services Electronics Program Contract DAAL03-92-C-0001U.S. Air Force - Office of Scientific Research Contract F49620-91-C-0091Charles S. Draper Laboratories Contract DL-H-441629MIT Lincoln LaboratoryCharles S. Draper Laboratories, Inc. Contract DL-H-418478Fujitsu LaboratoriesNational Science Foundation Grant ECS 90-12787National Center for Integrated PhotonicsNational Science Foundation Grant EET 88-15834National Science Foundation Grant ECS 85-52701U.S. Air Force - Office of Scientific Research Contract F49620-88-C-0089U.S. Navy - Office of Naval Research Contract N00014-91-C-0084U.S. Navy - Office of Naval Research Grant N00014-91-J-1956Johnson and Johnson Research GrantNational Institutes of Health Contract 2-R01-GM35459U.S. Department of Energy Grant DE-FG02-89 ER14012-A00

    Magnetic Forces And Magnetized Biomaterials Provide Dynamic Flux Information During Bone Regeneration

    Get PDF
    The fascinating prospect to direct tissue regeneration by magnetic activation has been recently explored. In this study we investigate the possibility to boost bone regeneration in an experimental defect in rabbit femoral condyle by combining static magnetic fields and magnetic biomaterials. NdFeB permanent magnets are implanted close to biomimetic collagen/hydroxyapatite resorbable scaffolds magnetized according to two different protocols. Permanent magnet only or non-magnetic scaffolds are used as controls. Bone tissue regeneration is evaluated at 12 weeks from surgery from a histological, histomorphometric and biomechanical point of view. The reorganization of the magnetized collagen fibers under the effect of the static magnetic field generated by the permanent magnet produces a highly-peculiar bone pattern, with highly-interconnected trabeculae orthogonally oriented with respect to the magnetic field lines. In contrast, only partial defect healing is achieved within the control groups. We ascribe the peculiar bone regeneration to the transfer of micro-environmental information, mediated by collagen fibrils magnetized by magnetic nanoparticles, under the effect of the static magnetic field. These results open new perspectives on the possibility to improve implant fixation and control the morphology and maturity of regenerated bone providing “in site” forces by synergically combining static magnetic fields and biomaterials

    A Polycentric Approach for Coping with Climate Change

    No full text

    Mortality after surgery in Europe: a 7 day cohort study

    Get PDF
    Background: Clinical outcomes after major surgery are poorly described at the national level. Evidence of heterogeneity between hospitals and health-care systems suggests potential to improve care for patients but this potential remains unconfirmed. The European Surgical Outcomes Study was an international study designed to assess outcomes after non-cardiac surgery in Europe.Methods: We did this 7 day cohort study between April 4 and April 11, 2011. We collected data describing consecutive patients aged 16 years and older undergoing inpatient non-cardiac surgery in 498 hospitals across 28 European nations. Patients were followed up for a maximum of 60 days. The primary endpoint was in-hospital mortality. Secondary outcome measures were duration of hospital stay and admission to critical care. We used χ² and Fisher’s exact tests to compare categorical variables and the t test or the Mann-Whitney U test to compare continuous variables. Significance was set at p<0·05. We constructed multilevel logistic regression models to adjust for the differences in mortality rates between countries.Findings: We included 46 539 patients, of whom 1855 (4%) died before hospital discharge. 3599 (8%) patients were admitted to critical care after surgery with a median length of stay of 1·2 days (IQR 0·9–3·6). 1358 (73%) patients who died were not admitted to critical care at any stage after surgery. Crude mortality rates varied widely between countries (from 1·2% [95% CI 0·0–3·0] for Iceland to 21·5% [16·9–26·2] for Latvia). After adjustment for confounding variables, important differences remained between countries when compared with the UK, the country with the largest dataset (OR range from 0·44 [95% CI 0·19 1·05; p=0·06] for Finland to 6·92 [2·37–20·27; p=0·0004] for Poland).Interpretation: The mortality rate for patients undergoing inpatient non-cardiac surgery was higher than anticipated. Variations in mortality between countries suggest the need for national and international strategies to improve care for this group of patients.Funding: European Society of Intensive Care Medicine, European Society of Anaesthesiology

    Mortality after surgery in Europe: a 7 day cohort study.

    No full text

    D. Die einzelnen romanischen Sprachen und Literaturen.

    No full text
    corecore