12 research outputs found

    Integrated Models of Care for Individuals with Opioid Use Disorder: How Do We Prevent HIV and HCV?

    Get PDF
    Purpose of Review To describe models of integrated and co-located care for opioid use disorder (OUD), hepatitis C (HCV), and HIV. Recent Findings The design and scale-up of multidisciplinary care models that engage, retain, and treat individuals with HIV, HCV, and OUD are critical to preventing continued spread of HIV and HCV. We identified 17 models within primary care (N = 3), HIV specialty care (N = 5), opioid treatment programs (N = 6), transitional clinics (N = 2), and community-based harm reduction programs (N = 1), as well as two emerging models. Summary Key components of such models are the provision of (1) medication-assisted treatment for OUD, (2) HIV and HCV treatment, (3) HIV pre-exposure prophylaxis, and (4) behavioral health services. Research is needed to understand differences in effectiveness between co-located and fully integrated care, combat the deleterious racial and ethnic legacies of the “War on Drugs,” and inform the delivery of psychiatric care. Increased access to harm reduction services is crucial

    Creative destruction in science

    Get PDF
    Drawing on the concept of a gale of creative destruction in a capitalistic economy, we argue that initiatives to assess the robustness of findings in the organizational literature should aim to simultaneously test competing ideas operating in the same theoretical space. In other words, replication efforts should seek not just to support or question the original findings, but also to replace them with revised, stronger theories with greater explanatory power. Achieving this will typically require adding new measures, conditions, and subject populations to research designs, in order to carry out conceptual tests of multiple theories in addition to directly replicating the original findings. To illustrate the value of the creative destruction approach for theory pruning in organizational scholarship, we describe recent replication initiatives re-examining culture and work morality, working parents\u2019 reasoning about day care options, and gender discrimination in hiring decisions. Significance statement It is becoming increasingly clear that many, if not most, published research findings across scientific fields are not readily replicable when the same method is repeated. Although extremely valuable, failed replications risk leaving a theoretical void\u2014 reducing confidence the original theoretical prediction is true, but not replacing it with positive evidence in favor of an alternative theory. We introduce the creative destruction approach to replication, which combines theory pruning methods from the field of management with emerging best practices from the open science movement, with the aim of making replications as generative as possible. In effect, we advocate for a Replication 2.0 movement in which the goal shifts from checking on the reliability of past findings to actively engaging in competitive theory testing and theory building. Scientific transparency statement The materials, code, and data for this article are posted publicly on the Open Science Framework, with links provided in the article

    Many Labs 5:Testing pre-data collection peer review as an intervention to increase replicability

    Get PDF
    Replication studies in psychological science sometimes fail to reproduce prior findings. If these studies use methods that are unfaithful to the original study or ineffective in eliciting the phenomenon of interest, then a failure to replicate may be a failure of the protocol rather than a challenge to the original finding. Formal pre-data-collection peer review by experts may address shortcomings and increase replicability rates. We selected 10 replication studies from the Reproducibility Project: Psychology (RP:P; Open Science Collaboration, 2015) for which the original authors had expressed concerns about the replication designs before data collection; only one of these studies had yielded a statistically significant effect (p < .05). Commenters suggested that lack of adherence to expert review and low-powered tests were the reasons that most of these RP:P studies failed to replicate the original effects. We revised the replication protocols and received formal peer review prior to conducting new replication studies. We administered the RP:P and revised protocols in multiple laboratories (median number of laboratories per original study = 6.5, range = 3?9; median total sample = 1,279.5, range = 276?3,512) for high-powered tests of each original finding with both protocols. Overall, following the preregistered analysis plan, we found that the revised protocols produced effect sizes similar to those of the RP:P protocols (?r = .002 or .014, depending on analytic approach). The median effect size for the revised protocols (r = .05) was similar to that of the RP:P protocols (r = .04) and the original RP:P replications (r = .11), and smaller than that of the original studies (r = .37). Analysis of the cumulative evidence across the original studies and the corresponding three replication attempts provided very precise estimates of the 10 tested effects and indicated that their effect sizes (median r = .07, range = .00?.15) were 78% smaller, on average, than the original effect sizes (median r = .37, range = .19?.50)

    Approaches to Predicting Outcomes in Patients with Acute Kidney Injury

    No full text
    <div><p>Despite recognition that Acute Kidney Injury (AKI) leads to substantial increases in morbidity, mortality, and length of stay, accurate prognostication of these clinical events remains difficult. It remains unclear which approaches to variable selection and model building are most robust. We used data from a randomized trial of AKI alerting to develop time-updated prognostic models using stepwise regression compared to more advanced variable selection techniques. We randomly split data into training and validation cohorts. Outcomes of interest were death within 7 days, dialysis within 7 days, and length of stay. Data elements eligible for model-building included lab values, medications and dosages, procedures, and demographics. We assessed model discrimination using the area under the receiver operator characteristic curve and r-squared values. 2241 individuals were available for analysis. Both modeling techniques created viable models with very good discrimination ability, with AUCs exceeding 0.85 for dialysis and 0.8 for death prediction. Model performance was similar across model building strategies, though the strategy employing more advanced variable selection was more parsimonious. Very good to excellent prediction of outcome events is feasible in patients with AKI. More advanced techniques may lead to more parsimonious models, which may facilitate adoption in other settings.</p></div

    Receiver-Operator Characteristic curves for death.

    No full text
    <p>Comparing the performance of conventional vs. alternative models in the prediction of death in the validation cohort. Area under the curve for conventional model: 0.80 (0.75–0.84), alternative model 0.80 (0.76–0.85).</p

    Principal Components Analysis.

    No full text
    <p>Colored points reflect individual level data, where individuals are mapped to a coordinate plane based upon 2 principal components derived from laboratory (panel A) and medication (panel B) data. Next to the colored plots, the covariate map appears. Covariates are mapped along the same two principal component vectors, helping to illustrate the correlations among several of the covariates. <b>A)</b> Laboratory covariates as mapped on two principal components. Based on laboratory values, a patient (represented as a dot) can be put anywhere on the coordinate plane. For the outcome of death within 7 days, red dots indicate an individual who died in that time frame, black an individual who did not. For LOS analyses, blue dots indicate shorter lengths of stay, with red dots indicating longer lengths of stay. Clustering of colors along one dimension of the plot suggests a significant relationship between that principal component and the outcome. Next to the patient plots is a plot showing each lab on the same two principal coordinate axes. Labs that are closer together a more correlated (for example, creatinine and BUN). Size of the text indicates strength of association between a given lab and that principal component. <b>B)</b> Medication covariates as mapped on two principal components. Based on medications received, a patient (represented as a dot) can be put anywhere on the coordinate plane. For the outcome of death within 7 days, red dots indicate an individual who died in that time frame, black an individual who did not. For LOS analyses, blue dots indicate shorter lengths of stay, with red dots indicating longer lengths of stay. Clustering of colors along one dimension of the plot suggests a significant relationship between that principal component and the outcome. Next to the patient plots is a plot showing each medication on the same two principal coordinate axes. Medications that are closer together a more correlated (for example, vancomycin and fentanyl). Size of the text indicates strength of association between a given lab and that principal component. Covariates ending in "category" are binary (ie D50 category is a 1 if the patient has received 50% dextrose infusion), whereas those ending in "dose" reflect the actual dose received. Higher resolution figures are available in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0169305#pone.0169305.s002" target="_blank">S2 File</a>.</p
    corecore