35 research outputs found

    Titan Science with the James Webb Space Telescope (JWST)

    Get PDF
    The James Webb Space Telescope (JWST), scheduled for launch in 2018, is the successor to the Hubble Space Telescope (HST) but with a significantly larger aperture (6.5 m) and advanced instrumentation focusing on infrared science (0.6-28.0 μ\mum ). In this paper we examine the potential for scientific investigation of Titan using JWST, primarily with three of the four instruments: NIRSpec, NIRCam and MIRI, noting that science with NIRISS will be complementary. Five core scientific themes are identified: (i) surface (ii) tropospheric clouds (iii) tropospheric gases (iv) stratospheric composition and (v) stratospheric hazes. We discuss each theme in depth, including the scientific purpose, capabilities and limitations of the instrument suite, and suggested observing schemes. We pay particular attention to saturation, which is a problem for all three instruments, but may be alleviated for NIRCam through use of selecting small sub-arrays of the detectors - sufficient to encompass Titan, but with significantly faster read-out times. We find that JWST has very significant potential for advancing Titan science, with a spectral resolution exceeding the Cassini instrument suite at near-infrared wavelengths, and a spatial resolution exceeding HST at the same wavelengths. In particular, JWST will be valuable for time-domain monitoring of Titan, given a five to ten year expected lifetime for the observatory, for example monitoring the seasonal appearance of clouds. JWST observations in the post-Cassini period will complement those of other large facilities such as HST, ALMA, SOFIA and next-generation ground-based telescopes (TMT, GMT, EELT).Comment: 50 pages, including 22 figures and 2 table

    Taking the pulse of Earth's tropical forests using networks of highly distributed plots

    Get PDF
    Tropical forests are the most diverse and productive ecosystems on Earth. While better understanding of these forests is critical for our collective future, until quite recently efforts to measure and monitor them have been largely disconnected. Networking is essential to discover the answers to questions that transcend borders and the horizons of funding agencies. Here we show how a global community is responding to the challenges of tropical ecosystem research with diverse teams measuring forests tree-by-tree in thousands of long-term plots. We review the major scientific discoveries of this work and show how this process is changing tropical forest science. Our core approach involves linking long-term grassroots initiatives with standardized protocols and data management to generate robust scaled-up results. By connecting tropical researchers and elevating their status, our Social Research Network model recognises the key role of the data originator in scientific discovery. Conceived in 1999 with RAINFOR (South America), our permanent plot networks have been adapted to Africa (AfriTRON) and Southeast Asia (T-FORCES) and widely emulated worldwide. Now these multiple initiatives are integrated via ForestPlots.net cyber-infrastructure, linking colleagues from 54 countries across 24 plot networks. Collectively these are transforming understanding of tropical forests and their biospheric role. Together we have discovered how, where and why forest carbon and biodiversity are responding to climate change, and how they feedback on it. This long-term pan-tropical collaboration has revealed a large long-term carbon sink and its trends, as well as making clear which drivers are most important, which forest processes are affected, where they are changing, what the lags are, and the likely future responses of tropical forests as the climate continues to change. By leveraging a remarkably old technology, plot networks are sparking a very modern revolution in tropical forest science. In the future, humanity can benefit greatly by nurturing the grassroots communities now collectively capable of generating unique, long-term understanding of Earth's most precious forests.Additional co-authors: Susan Laurance, William Laurance, Francoise Yoko Ishida, Andrew Marshall, Catherine Waite, Hannsjoerg Woell, Jean-Francois Bastin, Marijn Bauters, Hans Beeckman, Pfascal Boeckx, Jan Bogaert, Charles De Canniere, Thales de Haulleville, Jean-Louis Doucet, Olivier Hardy, Wannes Hubau, Elizabeth Kearsley, Hans Verbeeck, Jason Vleminckx, Steven W. Brewer, Alfredo Alarcón, Alejandro Araujo-Murakami, Eric Arets, Luzmila Arroyo, Ezequiel Chavez, Todd Fredericksen, René Guillén Villaroel, Gloria Gutierrez Sibauty, Timothy Killeen, Juan Carlos Licona, John Lleigue, Casimiro Mendoza, Samaria Murakami, Alexander Parada Gutierrez, Guido Pardo, Marielos Peña-Claros, Lourens Poorter, Marisol Toledo, Jeanneth Villalobos Cayo, Laura Jessica Viscarra, Vincent Vos, Jorge Ahumada, Everton Almeida, Jarcilene Almeida, Edmar Almeida de Oliveira, Wesley Alves da Cruz, Atila Alves de Oliveira, Fabrício Alvim Carvalho, Flávio Amorim Obermuller, Ana Andrade, Fernanda Antunes Carvalho, Simone Aparecida Vieira, Ana Carla Aquino, Luiz Aragão, Ana Claudia Araújo, Marco Antonio Assis, Jose Ataliba Mantelli Aboin Gomes, Fabrício Baccaro, Plínio Barbosa de Camargo, Paulo Barni, Jorcely Barroso, Luis Carlos Bernacci, Kauane Bordin, Marcelo Brilhante de Medeiros, Igor Broggio, José Luís Camargo, Domingos Cardoso, Maria Antonia Carniello, Andre Luis Casarin Rochelle, Carolina Castilho, Antonio Alberto Jorge Farias Castro, Wendeson Castro, Sabina Cerruto Ribeiro, Flávia Costa, Rodrigo Costa de Oliveira, Italo Coutinho, John Cunha, Lola da Costa, Lucia da Costa Ferreira, Richarlly da Costa Silva, Marta da Graça Zacarias Simbine, Vitor de Andrade Kamimura, Haroldo Cavalcante de Lima, Lia de Oliveira Melo, Luciano de Queiroz, José Romualdo de Sousa Lima, Mário do Espírito Santo, Tomas Domingues, Nayane Cristina dos Santos Prestes, Steffan Eduardo Silva Carneiro, Fernando Elias, Gabriel Eliseu, Thaise Emilio, Camila Laís Farrapo, Letícia Fernandes, Gustavo Ferreira, Joice Ferreira, Leandro Ferreira, Socorro Ferreira, Marcelo Fragomeni Simon, Maria Aparecida Freitas, Queila S. García, Angelo Gilberto Manzatto, Paulo Graça, Frederico Guilherme, Eduardo Hase, Niro Higuchi, Mariana Iguatemy, Reinaldo Imbrozio Barbosa, Margarita Jaramillo, Carlos Joly, Joice Klipel, Iêda Leão do Amaral, Carolina Levis, Antonio S. Lima, Maurício Lima Dan, Aline Lopes, Herison Madeiros, William E. Magnusson, Rubens Manoel dos Santos, Beatriz Marimon, Ben Hur Marimon Junior, Roberta Marotti Martelletti Grillo, Luiz Martinelli, Simone Matias Reis, Salomão Medeiros, Milton Meira-Junior, Thiago Metzker, Paulo Morandi, Natanael Moreira do Nascimento, Magna Moura, Sandra Cristina Müller, Laszlo Nagy, Henrique Nascimento, Marcelo Nascimento, Adriano Nogueira Lima, Raimunda Oliveira de Araújo, Jhonathan Oliveira Silva, Marcelo Pansonato, Gabriel Pavan Sabino, Karla Maria Pedra de Abreu, Pablo José Francisco Pena Rodrigues, Maria Piedade, Domingos Rodrigues, José Roberto Rodrigues Pinto, Carlos Quesada, Eliana Ramos, Rafael Ramos, Priscyla Rodrigues, Thaiane Rodrigues de Sousa, Rafael Salomão, Flávia Santana, Marcos Scaranello, Rodrigo Scarton Bergamin, Juliana Schietti, Jochen Schöngart, Gustavo Schwartz, Natalino Silva, Marcos Silveira, Cristiana Simão Seixas, Marta Simbine, Ana Claudia Souza, Priscila Souza, Rodolfo Souza, Tereza Sposito, Edson Stefani Junior, Julio Daniel do Vale, Ima Célia Guimarães Vieira, Dora Villela, Marcos Vital, Haron Xaud, Katia Zanini, Charles Eugene Zartman, Nur Khalish Hafizhah Ideris, Faizah binti Hj Metali, Kamariah Abu Salim, Muhd Shahruney Saparudin, Rafizah Mat Serudin, Rahayu Sukmaria Sukri, Serge Begne, George Chuyong, Marie Noel Djuikouo, Christelle Gonmadje, Murielle Simo-Droissart, Bonaventure Sonké, Hermann Taedoumg, Lise Zemagho, Sean Thomas, Fidèle Baya, Gustavo Saiz, Javier Silva Espejo, Dexiang Chen, Alan Hamilton, Yide Li, Tushou Luo, Shukui Niu, Han Xu, Zhang Zhou, Esteban Álvarez-Dávila, Juan Carlos Andrés Escobar, Henry Arellano-Peña, Jaime Cabezas Duarte, Jhon Calderón, Lina Maria Corrales Bravo, Borish Cuadrado, Hermes Cuadros, Alvaro Duque, Luisa Fernanda Duque, Sandra Milena Espinosa, Rebeca Franke-Ante, Hernando García, Alejandro Gómez, Roy González-M., Álvaro Idárraga-Piedrahíta, Eliana Jimenez, Rubén Jurado, Wilmar López Oviedo, René López-Camacho, Omar Aurelio Melo Cruz, Irina Mendoza Polo, Edwin Paky, Karen Pérez, Angel Pijachi, Camila Pizano, Adriana Prieto, Laura Ramos, Zorayda Restrepo Correa, James Richardson, Elkin Rodríguez, Gina M. Rodriguez M., Agustín Rudas, Pablo Stevenson, Markéta Chudomelová, Martin Dancak, Radim Hédl, Stanislav Lhota, Martin Svatek, Jacques Mukinzi, Corneille Ewango, Terese Hart, Emmanuel Kasongo Yakusu, Janvier Lisingo, Jean-Remy Makana, Faustin Mbayu, Benjamin Toirambe, John Tshibamba Mukendi, Lars Kvist, Gustav Nebel, Selene Báez, Carlos Céron, Daniel M. Griffith, Juan Ernesto Guevara Andino, David Neill, Walter Palacios, Maria Cristina Peñuela-Mora, Gonzalo Rivas-Torres, Gorky Villa, Sheleme Demissie, Tadesse Gole, Techane Gonfa, Kalle Ruokolainen, Michel Baisie, Fabrice Bénédet, Wemo Betian, Vincent Bezard, Damien Bonal, Jerôme Chave, Vincent Droissart, Sylvie Gourlet-Fleury, Annette Hladik, Nicolas Labrière, Pétrus Naisso, Maxime Réjou-Méchain, Plinio Sist, Lilian Blanc, Benoit Burban, Géraldine Derroire, Aurélie Dourdain, Clement Stahl, Natacha Nssi Bengone, Eric Chezeaux, Fidèle Evouna Ondo, Vincent Medjibe, Vianet Mihindou, Lee White, Heike Culmsee, Cristabel Durán Rangel, Viviana Horna, Florian Wittmann, Stephen Adu-Bredu, Kofi Affum-Baffoe, Ernest Foli, Michael Balinga, Anand Roopsind, James Singh, Raquel Thomas, Roderick Zagt, Indu K. Murthy, Kuswata Kartawinata, Edi Mirmanto, Hari Priyadi, Ismayadi Samsoedin, Terry Sunderland, Ishak Yassir, Francesco Rovero, Barbara Vinceti, Bruno Hérault, Shin-Ichiro Aiba, Kanehiro Kitayama, Armandu Daniels, Darlington Tuagben, John T. Woods, Muhammad Fitriadi, Alexander Karolus, Kho Lip Khoon, Noreen Majalap, Colin Maycock, Reuben Nilus, Sylvester Tan, Almeida Sitoe, Indiana Coronado G., Lucas Ojo, Rafael de Assis, Axel Dalberg Poulsen, Douglas Sheil, Karen Arévalo Pezo, Hans Buttgenbach Verde, Victor Chama Moscoso, Jimmy Cesar Cordova Oroche, Fernando Cornejo Valverde, Massiel Corrales Medina, Nallaret Davila Cardozo, Jano de Rutte Corzo, Jhon del Aguila Pasquel, Gerardo Flores Llampazo, Luis Freitas, Darcy Galiano Cabrera, Roosevelt García Villacorta, Karina Garcia Cabrera, Diego García Soria, Leticia Gatica Saboya, Julio Miguel Grandez Rios, Gabriel Hidalgo Pizango, Eurídice Honorio Coronado, Isau Huamantupa-Chuquimaco, Walter Huaraca Huasco, Yuri Tomas Huillca Aedo, Jose Luis Marcelo Peña, Abel Monteagudo Mendoza, Vanesa Moreano Rodriguez, Percy Núñez Vargas, Sonia Cesarina Palacios Ramos, Nadir Pallqui Camacho, Antonio Peña Cruz, Freddy Ramirez Arevalo, José Reyna Huaymacari, Carlos Reynel Rodriguez, Marcos Antonio Ríos Paredes, Lily Rodriguez Bayona, Rocio del Pilar Rojas Gonzales, Maria Elena Rojas Peña, Norma Salinas Revilla, Yahn Carlos Soto Shareva, Raul Tupayachi Trujillo, Luis Valenzuela Gamarra, Rodolfo Vasquez Martinez, Jim Vega Arenas, Christian Amani, Suspense Averti Ifo, Yannick Bocko, Patrick Boundja, Romeo Ekoungoulou, Mireille Hockemba, Donatien Nzala, Alusine Fofanah, David Taylor, Guillermo Bañares-de Dios, Luis Cayuela, Íñigo Granzow-de la Cerda, Manuel Macía, Juliana Stropp, Maureen Playfair, Verginia Wortel, Toby Gardner, Robert Muscarella, Hari Priyadi, Ervan Rutishauser, Kuo-Jung Chao, Pantaleo Munishi, Olaf Bánki, Frans Bongers, Rene Boot, Gabriella Fredriksson, Jan Reitsma, Hans ter Steege, Tinde van Andel, Peter van de Meer, Peter van der Hout, Mark van Nieuwstadt, Bert van Ulft, Elmar Veenendaal, Ronald Vernimmen, Pieter Zuidema, Joeri Zwerts, Perpetra Akite, Robert Bitariho, Colin Chapman, Eilu Gerald, Miguel Leal, Patrick Mucunguzi, Miguel Alexiades, Timothy R. Baker, Karina Banda, Lindsay Banin, Jos Barlow, Amy Bennett, Erika Berenguer, Nicholas Berry, Neil M. Bird, George A. Blackburn, Francis Brearley, Roel Brienen, David Burslem, Lidiany Carvalho, Percival Cho, Fernanda Coelho, Murray Collins, David Coomes, Aida Cuni-Sanchez, Greta Dargie, Kyle Dexter, Mat Disney, Freddie Draper, Muying Duan, Adriane Esquivel-Muelbert, Robert Ewers, Belen Fadrique, Sophie Fauset, Ted R. Feldpausch, Filipe França, David Galbraith, Martin Gilpin, Emanuel Gloor, John Grace, Keith Hamer, David Harris, Tommaso Jucker, Michelle Kalamandeen, Bente Klitgaard, Aurora Levesley, Simon L. Lewis, Jeremy Lindsell, Gabriela Lopez-Gonzalez, Jon Lovett, Yadvinder Malhi, Toby Marthews, Emma McIntosh, Karina Melgaço, William Milliken, Edward Mitchard, Peter Moonlight, Sam Moore, Alexandra Morel, Julie Peacock, Kelvin Peh, Colin Pendry, R. Toby Pennington, Luciana de Oliveira Pereira, Carlos Peres, Oliver L. Phillips, Georgia Pickavance, Thomas Pugh, Lan Qie, Terhi Riutta, Katherine Roucoux, Casey Ryan, Tiina Sarkinen, Camila Silva Valeria, Dominick Spracklen, Suzanne Stas, Martin Sullivan, Michael Swaine, Joey Talbot, James Taplin, Geertje van der Heijden, Laura Vedovato, Simon Willcock, Mathew Williams, Luciana Alves, Patricia Alvarez Loayza, Gabriel Arellano, Cheryl Asa, Peter Ashton, Gregory Asner, Terry Brncic, Foster Brown, Robyn Burnham, Connie Clark, James Comiskey, Gabriel Damasco, Stuart Davies, Tony Di Fiore, Terry Erwin, William Farfan-Rios, Jefferson Hall, David Kenfack, Thomas Lovejoy, Roberta Martin, Olga Martha Montiel, John Pipoly, Nigel Pitman, John Poulsen, Richard Primack, Miles Silman, Marc Steininger, Varun Swamy, John Terborgh, Duncan Thomas, Peter Umunay, Maria Uriarte, Emilio Vilanova Torre, Ophelia Wang, Kenneth Young, Gerardo A. Aymard C., Lionel Hernández, Rafael Herrera Fernández, Hirma Ramírez-Angulo, Pedro Salcedo, Elio Sanoja, Julio Serrano, Armando Torres-Lezama, Tinh Cong Le, Trai Trong Le, Hieu Dang Tra

    Latitudinal variations of CO and OCS in the lower atmosphere of Venus from near-infrared nightside spectro-imaging

    No full text
    International audienceSpectro-imaging of Venus' nightside in the 2.3-μm window provides a powerful means of probing the lower atmosphere in the 25–40 km altitude range. We present observations recorded at the NASA/IRTF in February 2003 and August 2004, using the SpeX spectro-imager in the 2.1–2.5-μm region. Abundances of CO and OCS have been derived as a function of latitude for different longitudes. The CO abundance increases by about 15% between the equatorial region and higher latitudes (±40°). No longitudinal or temporal variations are observed. The OCS abundance shows the opposite variation in observational sets with sufficient S/N. These variations and anticorrelation are consistent with upwelling motions in the equatorial region and downwelling at higher latitudes

    Methane Photochemistry on Neptune: Ethane and Acetylene Mixing Ratios and Haze Production

    Full text link
    We have used a one-dimensional methane photochemical model to analyze Voyager observations of hydrocarbons and hazes in the stratosphere of Neptune. Vayager IRIS spectra provide information about the global average C2H2 and C2H6 mixing ratios for p > 0.1 mbar. The UVS lightcurves provide constraints on CH4 and C2H4 in addition to C2H2 and C2H6 but only at the solar occultation latitudes and for lower pressures. The model-predicted hydrocarbons are very sensitive to the height profile of the eddy diffusion coefficient (K). For both data sets K varying inversely with the atmospheric number density to some power produced poor results. Good agreement with the data requires that K be weak in the lower stratosphere (K [similar, equals] 2 x 103 cm2 sec-1 for p[greater, not approximate]2 mbar) but fairly vigorous in the upper stratosphere (K > 5 x 107 cm2 sec-1 for p[less, not approximate] 0.5 mbar), i.e., a rapidly mixed upper stratosphere overlying a stagnant lower stratosphere with a rapid transition in between. The model C2H6 and C2H2 mixing ratios are also sensitive to the reaction rate constants of C2H4 + H and CH3 + C2H3. Notably, we must use the present upper limit for the C2H4 + H rate to best fit the model results to the observations. We are able to reproduce the IRIS C2H2 and C2H6 emission features well, less so the UVS occultation lightcurves. Since the transport of C2H2, C2H6, and other hydrocarbons produced from methane photolysis out of the stratosphere is by ice haze formation and sedimentation, we compared model haze predictions to PPS and IRIS observations. For solar maximum fluxes (Voyager encounter conditions) the model mass production rate is 1 x 10-14 g cm2 sec-1. C2H6 is the dominant haze component (75%), with the remainder coming from C2H2 and C3 and C4 compounds. Balancing the above haze production rate by the sedimentation rate for 0.25-[mu]m radius particles (upper limit to particle radius from PPS observations) yields a total haze column burden slightly above the PPS upper limit. However, lifetime analysis indicates that the model haze production rate should be averaged over solar minimum and maximum conditions. Under these conditions the model haze density is consistent with the PPS data. The predicted C4H2 and C2H6 haze column densities are consistent with the lack of ice signatures in the IRIS spectra.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30419/1/0000040.pd

    Thermal mapping of HDO and SO2 on Venus: results from the 2021-2023 observations

    No full text
    International audienceSince 2012, water vapor and sulfur dioxide have been monitored at the cloud top of Venus using the TEXES (Texas Echelon Cross Echelle Spectrograph) imaging spectrometer at the NASA IRTF (InfraRed Telescope Facility, Mauna Kea Observatory). Mixing ratios of the two species were inferred from weak transitions of HDO (used as a proxy from H2O), SO2 and CO2. The H2O maps are always uniform over the disk and show moderate temporal variations. Over the long term, SO2 exhibits variations by a factor as large as 10, while the H2O variations do not exceed a factor 3. Between 2014 and 2019, the two molecules exhibited a clear anti-correlation which is no more observed after 2021. Reasons for this change are not clear. The anti-correlation might result from photochemical processes, while convective motions might favor the mixing of the two species. In addition, unlike H2O, SO2 exhibits strong short-term variations in the form of episodic plumes with a life time shorter than a day. They are mostly observed around the equator and in the vicinity of the terminators. Between 2021 and March 2023, the SO2 content has been especially low, but the plume activity has been strongly variable (high in November 2022 and weak in March 2023). Observing SO2 simultaneously at two different wavelengths (7.4 and 19 microns) has allowed us to probe the SO2 abundance at two different altitudes, at the cloud top (z = 62 km, at 7.4 microns) and a few kilometers below within the cloud (z = 57 km, at 19 microns). In most of the cases, the SO2 gradient has been found more or less constant, but in a few occasions, the SO2 gradient can be either positive or negative. Above the cloud top, the SO2 mixing ratio decreases rapidly, as illustrated by the widths of the SO2 lines, broader than the CO2 lines. Finally, the temperature fields retrieved from continuum maps at 7.4, 19 and 8.6 microns (z = 67 km) in September and November 2021 show an unusual structure, possibly associated with gravity waves, as previously observed by the LIR camera aboard the Akatsuki spacecraft

    Thermal mapping of HDO and SO2 on Venus: results from the 2021-2023 observations

    No full text
    International audienceSince 2012, water vapor and sulfur dioxide have been monitored at the cloud top of Venus using the TEXES (Texas Echelon Cross Echelle Spectrograph) imaging spectrometer at the NASA IRTF (InfraRed Telescope Facility, Mauna Kea Observatory). Mixing ratios of the two species were inferred from weak transitions of HDO (used as a proxy from H2O), SO2 and CO2. The H2O maps are always uniform over the disk and show moderate temporal variations. Over the long term, SO2 exhibits variations by a factor as large as 10, while the H2O variations do not exceed a factor 3. Between 2014 and 2019, the two molecules exhibited a clear anti-correlation which is no more observed after 2021. Reasons for this change are not clear. The anti-correlation might result from photochemical processes, while convective motions might favor the mixing of the two species. In addition, unlike H2O, SO2 exhibits strong short-term variations in the form of episodic plumes with a life time shorter than a day. They are mostly observed around the equator and in the vicinity of the terminators. Between 2021 and March 2023, the SO2 content has been especially low, but the plume activity has been strongly variable (high in November 2022 and weak in March 2023). Observing SO2 simultaneously at two different wavelengths (7.4 and 19 microns) has allowed us to probe the SO2 abundance at two different altitudes, at the cloud top (z = 62 km, at 7.4 microns) and a few kilometers below within the cloud (z = 57 km, at 19 microns). In most of the cases, the SO2 gradient has been found more or less constant, but in a few occasions, the SO2 gradient can be either positive or negative. Above the cloud top, the SO2 mixing ratio decreases rapidly, as illustrated by the widths of the SO2 lines, broader than the CO2 lines. Finally, the temperature fields retrieved from continuum maps at 7.4, 19 and 8.6 microns (z = 67 km) in September and November 2021 show an unusual structure, possibly associated with gravity waves, as previously observed by the LIR camera aboard the Akatsuki spacecraft

    Study of Titan’s fall southern stratospheric polar cloud composition with Cassini/CIRS : Detection of benzene ice

    No full text
    We report the detection of a spectral signature observed at 682 cm−1 by the Cassini Composite Infrared Spectrometer (CIRS) in nadir and limb geometry observations of Titan's southern stratospheric polar region in the middle of southern fall, while stratospheric temperatures are the coldest since the beginning of the Cassini mission. The 682 cm−1 signature, which is only observed below an altitude of 300-km, is at least partly attributed to the benzene (C6H6) ice ν4 C-H bending mode. While we first observed it in CIRS nadir spectra of the southern polar region in early 2013, we focus here on the study of nadir data acquired in May 2013, which have a more favorable observation geometry. We derived the C6H6 ice mass mixing ratio in 5{\deg}S latitude bins from the south pole to 65{\deg}S and infer the C6H6 cloud top altitude to be located deeper with increasing distance from the pole. We additionally analyzed limb data acquired in March 2015, which were the first limb dataset available after the May 2013 nadir observation, in order to infer a vertical profile of its mass mixing ratio in the 0.1 - 1 mbar region (250 - 170 km). We derive an upper limit of ∼1.5 μm for the equivalent radius of pure C6H6 ice particles from the shape of the observed emission band. Several other unidentified signatures are observed near 687 and 702 cm−1 and possibly 695 cm−1, which could also be due to ice spectral signatures as they are observed in the deep stratosphere at pressure levels similar to the C6H6 ice ones. We could not reproduce these signatures with pure nitrile ice (HCN, HC3N,CH3CN, C2H5CN and C2N2) spectra available in the literature except the 695 cm−1 feature that could possibly be due to C2H3CN ice

    Meridional Distribution of CH3C2H and C4H2 in Saturn's Stratosphere from CIRS/Cassini Limb and Nadir Observations

    No full text
    Limb and nadir spectra acquired by Cassini/CIRS (Composite InfraRed Spectrometer) are analyzed in order to derive, for the first time, the meridional variations of diacetylene (C4H2) and methylacetylene (CH3C2H) mixing ratios in Saturn's stratosphere, from 5 hPa up to 0.05 hPa and 80 deg S to 45 deg N. We find that the C4H2 and CH3C2H meridional distributions mimic that of acetylene (C2H2), exhibiting small-scale variations that are not present in photochemical model predictions. The most striking feature of the meridional distribution of both molecules is an asymmetry between mid-southern and mid-northern latitudes. The mid-southern latitudes are found depleted in hydrocarbons relative to their northern counterparts. In contrast, photochemical models predict similar abundances at north and south mid-latitudes. We favor a dynamical explanation for this asymmetry, with upwelling in the south and downwelling in the north, the latter coinciding with the region undergoing ring shadowing. The depletion in hydrocarbons at mid-southern latitudes could also result from chemical reactions with oxygen-bearing molecules. Poleward of 60 deg S, at 0.1 and 0.05 hPa, we find that the CH3C2H and C4H2 abundances increase dramatically. This behavior is in sharp contradiction with photochemical model predictions, which exhibit a strong decrease towards the south pole. Several processes could explain our observations, such as subsidence, a large vertical eddy diffusion coefficient at high altitudes, auroral chemistry that enhances CH3C2H and C4H2 production, or shielding from photolysis by aerosols or molecules produced from auroral chemistry. However, problems remain with all these hypotheses, including the lack of similar behavior at lower altitudes. Our derived mean mixing ratios at 0.5 hPa of (2.4 +/- 0.3) 10(exp -10) for C4H2 and of (1.1 +/- 0.3) 10(exp -9) for CH3C2H are compatible with the analysis of global-average ISO observations performed by Moses et al. Finally, we provide values for the ratios [CH3C2H]/[C2H2] and [C4H2]/[C2H2] that can constrain the coupled chemistry of these hydrocarbons

    Ground-based thermal mapping of Venus: HDO and SO2 monitoring and upper limits of NH3, PH3 and HCN at the cloud top

    No full text
    International audienceAs part of a long-term monitoring program, full disk thermal maps of HDO (near 7 microns) and SO2 (near 7 and 19 microns) have been obtained at the cloud top of Venus in 2023, using the TEXES(Texas Echelon Cross-Echelle Spectrograph) imaging spectrometer at the Infrared Telescope Facility (IRTF) at Mauna Kea Observatory. Assuming a constant D/H isotopic ratio, the water abundance has been more or less constant since 2018, at about half its value in 2012-2016. In contrast, the SO2 abundance, which was very high in 2018-2019 and very low between July 2021 and March 2023, has increased by a factor of about 5 between February and July 2023 (close to its maximum level of 2018-2019), and has remained at its high level in September 2023. The origin of these long-term variations is still unclear. In addition, stringent upper limits of NH3 (at 927-931 cm-1), PH3 (at 1161-1164 cm-1) and HCN at 744-748 cm-1) at the cloud top have been obtained in July 2023. These results will be presented and discussed
    corecore