84 research outputs found

    Mustard carbonate analogues

    Get PDF
    Sulfur and nitrogen (half-)mustard carbonate analogues are a new class of compounds, easily synthesized by methoxycarbonylation reaction of the parent alcohols with dialkyl carbonates. In this work, their reactivity as novel, green electrophiles is reported. Reactions have been conducted in autoclave conditions at high temperature (180 °C), under pressure and in absence of any base, as well as, in neat at atmospheric pressure, lower temperature (150 °C) and in the presence of a catalytic amount of a base. Several nucleophiles have been investigated resulting, in some cases, in unexpected compounds, i.e., six-membered heterocycle piperidine. Reaction mechanism and kinetics have been studied confirming that these compounds retain the anchimeric effect of their mustard gas analogues, without being toxic. Noteworthy, a symmetrical nitrogen mustard carbonate has also been employed as reagent in the preparation of a new family of macrocycles i.e., azacrowns, before not easily accessible

    Dialkyl Carbonates in the Green Synthesis of Heterocycles

    Get PDF
    This review focuses on the use of dialkyl carbonates (DACs) as green reagents and solvents for the synthesis of several 5- and 6-membered heterocycles including: tetrahydrofuran and furan systems, pyrrolidines, indolines, isoindolines, 1,4-dioxanes, piperidines, and cyclic carbamates. Depending on the heterocycle investigated, the synthetic approach used was different. Tetrahydrofuran systems, pyrrolidines, indolines, isoindoline, and 1,4-dioxanes were synthesized using dimethyl carbonate (DMC) as sacrificial molecule (BAc2/BAl2 mechanism). Cyclic carbamates, namely 1,3-oxazin-2-ones, were prepared employing DACs as carbonylating agents, either by BAc2/BAl2 mechanism or through a double BAc2 mechanism. Piperidines were synthetized taking advantage of the anchimeric effect of a new family of dialkyl carbonates, i.e., mustard carbonates. Finally, in the case 5-hydroxymethylfurfural (HMF), DMC has been employed as efficient extracting solvent of this extensively investigated bio-based platform chemical from the reaction mixture. These synthetic approaches demonstrate, once again, the great versatility of DACs and their—yet to be fully explored—potential as green reagents and solvents in the synthesis of heterocycles
    • …
    corecore