166 research outputs found
The properties of the star-forming interstellar medium at z = 0.84-2.23 from HiZELS : mapping the internal dynamics and metallicity gradients in high-redshift disc galaxies.
We present adaptive optics assisted, spatially resolved spectroscopy of a sample of nine Hα-selected galaxies at z = 0.84-2.23 drawn from the HiZELS narrow-band survey. These galaxies have star formation rates of 1-27 M⊙ yr-1 and are therefore representative of the typical high-redshift star-forming population. Our ˜kpc-scale resolution observations show that approximately half of the sample have dynamics suggesting that the ionized gas is in large, rotating discs. We model their velocity fields to infer the inclination-corrected, asymptotic rotational velocities. We use the absolute B-band magnitudes and stellar masses to investigate the evolution of the B-band and stellar-mass Tully-Fisher relationships. By combining our sample with a number of similar measurements from the literature, we show that, at fixed circular velocity, the stellar mass of star-forming galaxies has increased by a factor of 2.5 between z = 2 and 0, whilst the rest-frame B-band luminosity has decreased by a factor of ˜ 6 over the same period. Together, these demonstrate a change in mass-to-light ratio in the B band of Δ(M/LB)/(M/LB)z=0 ˜ 3.5 between z = 1.5 and 0, with most of the evolution occurring below z = 1. We also use the spatial variation of [N II]/Hα to show that the metallicity of the ionized gas in these galaxies declines monotonically with galactocentric radius, with an average Δ log(O/H)/ΔR = -0.027 ± 0.005 dex kpc-1. This gradient is consistent with predictions for high-redshift disc galaxies from cosmologically based hydrodynamic simulations
Experimental investigation of the flow evolution in the tributary of a 90° open channel confluence
Open channel and river confluences have received a lot of attention in hydraulic literature, because of the interesting flow phenomena observed. Features such as flow acceleration, curvature, separation, mixing and recovery are combined in the confluence area into a complex 3D flow pattern. Typically, the analysis of these features is started at the upstream corner of the confluence area, and the upstream main and tributary branches are considered to be the (uniform) upstream boundary conditions. However, several indications in literature suggest the existence of flow features upstream of the confluence corner. This paper confirms, by means of measurements in a laboratory, 90° confluence flume, considerable streamline curvature in the tributary branch, upstream of the confluence. Furthermore, it shows and quantifies velocity redistribution as well as local water surface super-elevation and depression in the tributary branch. Consequently, flow fea-ture analysis in confluences should start a considerable distance upstream of the confluence
Distant FR I radio galaxies in the Hubble Deep Field: implications for the cosmological evolution of radio-loud AGN
Deep and high resolution radio observations of the Hubble Deep Field and
flanking fields have shown the presence of two distant edge-darkened FR I radio
galaxies, allowing for the first time an estimate of their high redshift space
density. If it is assumed that the space density of FR I radio galaxies at z>1
is similar to that found in the local universe, then the chance of finding two
FR I radio galaxies at these high radio powers in such a small area of sky is
1
than at present, effectively ruling out the possibility that FR I radio sources
undergo no cosmological evolution. We suggest that FR I and FR II radio
galaxies should not be treated as intrinsically distinct classes of objects,
but that the cosmological evolution is simply a function of radio power with FR
I and FR II radio galaxies of similar radio powers undergoing similar
cosmological evolutions. Since low power radio galaxies have mainly FR I
morphologies and high power radio galaxies have mainly FR II morphologies, this
results in a generally stronger cosmological evolution for the FR IIs than the
FR Is. We believe that additional support from the V/Vmax test for evolving and
non-evolving populations of FR IIs and FR Is respectively is irrelevant, since
this test is sensitive over very different redshift ranges for the two classes.Comment: LaTeX, 6 pages, 3 figs. To appear in MNRA
Infrared Magnitude-Redshift Relations for Luminous Radio Galaxies
Infrared magnitude-redshift relations for the 3CR and 6C samples of radio
galaxies are presented for a wide range of plausible cosmological models,
including those with non-zero cosmological constant OmegaLambda. Variations in
the galaxy formation redshift, metallicity and star formation history are also
considered. The results of the modelling are displayed in terms of magnitude
differences between the models and no-evolution tracks, illustrating the amount
of K-band evolution necessary to account for the observational data. Given a
number of plausible assumptions, the results of these analyses suggest that:
(i) cosmologies which predict T_0xH_0>1 (where T_0 denotes the current age of
the universe) can be excluded; (ii) the star formation redshift should lie in
the redshift interval 5<z<20, values towards the lower end of the range being
preferred in cosmologies with larger values of T_0xH_0; (iii) the Einstein-de
Sitter model provides a reasonable fit to the data; (iv) models with finite
values of OmegaLambda can provide good agreement with the observations only if
appropriate adjustments of other parameters such as the galaxy metallicities
and star-formation histories are made. Without such modifications, even after
accounting for stellar evolution, the high redshift radio galaxies are more
luminous (ie. more massive) than those nearby in models with finite
OmegaLambda, including the favoured model with Omega=0.3, OmegaLambda=0.7. For
cosmological models with larger values of T_0xH_0, the conclusions are the same
regardless of whether any adjustments are made or not. The implications of
these results for cosmology and models of galaxy formation are discussed.Comment: 14 pages, LaTeX, 9 figures, accepted for publication in MNRAS.
Replacement corrects some annoying typo
Calibrating the relation of low-frequency radio continuum to star formation rate at 1 kpc scale with LOFAR
9 figures, 6 tables and 17 pages. This paper is part of the LOFAR surveys data release 1 and has been accepted for publication in a special edition of A&A that will appear in Feb 2019, volume 622. The catalogues and images from the data release will be publicly available on lofar-surveys.org upon publication of the journal. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.Radio continuum (RC) emission in galaxies allows us to measure star formation rates (SFRs) unaffected by extinction due to dust, of which the low-frequency part is uncontaminated from thermal (free-free) emission. We calibrate the conversion from the spatially resolved 140 MHz RC emission to the SFR surface density () at 1 kpc scale. We used recent observations of three galaxies (NGC 3184, 4736, and 5055) from the LOFAR Two-metre Sky Survey (LoTSS), and archival LOw-Frequency ARray (LOFAR) data of NGC 5194. Maps were created with the facet calibration technique and converted to radio maps using the Condon relation. We compared these maps with hybrid maps from a combination of GALEX far-ultraviolet and Spitzer 24 data using plots tracing the relation at -kpc resolution. The RC emission is smoothed with respect to the hybrid owing to the transport of cosmic-ray electrons (CREs). This results in a sublinear relation , where (140 MHz) and (1365 MHz). Both relations have a scatter of . If we restrict ourselves to areas of young CREs (; ), the relation becomes almost linear at both frequencies with and a reduced scatter of . We then simulate the effect of CRE transport by convolving the hybrid maps with a Gaussian kernel until the RC-SFR relation is linearised; CRE transport lengths are -5 kpc. Solving the CRE diffusion equation, we find diffusion coefficients of - at 1 GeV. A RC-SFR relation at GHz can be exploited to measure SFRs at redshift using MHz observations.Peer reviewe
Calibrating [O II] star formation rates at z < 1 from dual Hα-[O II] imaging from HiZELS
We investigate the relationship between Hα and [O II](λ3727) emission in faint star-forming galaxies at z = 1.47 with dust uncorrected star formation rates (SFRs) down to 1.4 M⊙ yr-1, using data in two narrow bands from wide-field camera/United Kingdom Infrared Telescope and Subaru prime focus camera/Subaru. A stacking analysis allows us to investigate Hα emission flux from bright [O II] emitters as well as faint ones for which Hα is not individually detected, and to compare them with a large sample of local galaxies. We find that there is a clear, positive correlation between the average Hα and [O II] luminosities for [O II] emitters at z = 1.47, with its slope being consistent with the local relation. [O II] emitters at z = 1.47 have lower mean observed ratios of Hα/[O II] suggesting a small but systematic offset (at 2.8σ significance) towards lower values of dust attenuation, AHα ˜ 0.35, than local galaxies. This confirms that [O II] selection tends to pick up galaxies which are significantly less dusty on average than Hα-selected ones, with the difference being higher at z = 1.47 than at z = 0. The discrepancy of the observed line ratios between [O II] emitters at z = 1.47 and the local galaxies may in part be due to the samples having different metallicities. However, we demonstrate that metallicity is unlikely to be the main cause. Therefore, it is important to take into account that the relations for the dust correction which are derived using Hα emitter samples, and frequently used in many studies of high-z galaxies, may overestimate the intrinsic SFRs of [O II]-selected galaxies, and that surveys of [O II] emission galaxies are likely to miss dusty populations
Morphological classification of radio galaxies: Capsule Networks versus Convolutional Neural Networks
Next-generation radio surveys will yield an unprecedented amount of data, warranting analysis by use of machine learning techniques. Convolutional neural networks are the deep learning technique that has proven to be the most successful in classifying image data. Capsule networks are a more recently developed technique that use capsules comprised of groups of neurons, that describe properties of an image including the relative spatial locations of features. The current work explores the performance of different capsule network architectures against simpler convolutional neural network architectures, in reproducing the classifications into the classes of unresolved, FRI and FRII morphologies. We utilise images from a LOFAR survey which is the deepest, wide-area radio survey to date, revealing more complex radio-source structures compared to previous surveys, presenting further challenges for machine learning algorithms. The 4- and 8-layer convolutional networks attain an average precision of 93.3% and 94.3% respectively, compared to 89.7% obtained with the capsule network, when training on original and augmented images. Implementing transfer learning achieves a precision of 94.4%, that is within the confidence interval of the 8-layer convolutional network. The convolutional networks always outperform any variation of the capsule network, as they prove to be more robust to the presence of noise in images. The use of pooling appears to allow more freedom for the intra-class variability of radio galaxy morphologies, as well as reducing the impact of noise
The stellar mass function of star-forming galaxies and the mass-dependent SFR function since z = 2.23 from HiZELS
We explore a large uniformly selected sample of Hα selected star-forming galaxies (SFGs) at z = 0.40, 0.84, 1.47, 2.23 to unveil the evolution of the star formation rate (SFR) function and the stellar mass function. We find strong evolution in the SFR function, with the typical SFR of SFGs declining exponentially in the last 11 Gyr as SFR*(T[Gyr]) = 104.23/T + 0.37 M⊙ yr−1, but with no evolution in the faint-end slope, α ≈ −1.6. The stellar mass function of SFGs, however, reveals little evolution: α ≈ −1.4, M* ∼ 1011.2 ± 0.2 M⊙ and just a slight increase of ∼2.3× in Φ* from z = 2.23 to z = 0.4. The stellar mass density within SFGs has been roughly constant since z = 2.23 at ∼107.65 ± 0.08 M⊙ Mpc−3, comprising ≈100 per cent of the stellar mass density in all galaxies at z = 2.23, and declining to ≈20 per cent by z = 0.40, driven by the rise of the passive population. We find that SFGs with ∼1010.0 ± 0.2 M⊙ contribute most to the SFR density (ρSFR) per d log10M, and that there is no significant evolution in the fractional contribution from SFGs of different masses to ρSFR or ρSFR(d log10M)−1 since z = 2.23. Instead, we show that the decline of SFR* and of ρSFR is primarily driven by an exponential decline in SFRs at all masses. Our results have important implications not only on how SFGs need to be quenched across cosmic time, but also on the driver(s) of the exponential decline in SFR* from ∼66 M⊙ yr−1 to 5 M⊙ yr−1 since z ∼ 2.23
Observing Supermassive Black Holes across cosmic time: from phenomenology to physics
In the last decade, a combination of high sensitivity, high spatial
resolution observations and of coordinated multi-wavelength surveys has
revolutionized our view of extra-galactic black hole (BH) astrophysics. We now
know that supermassive black holes reside in the nuclei of almost every galaxy,
grow over cosmological times by accreting matter, interact and merge with each
other, and in the process liberate enormous amounts of energy that influence
dramatically the evolution of the surrounding gas and stars, providing a
powerful self-regulatory mechanism for galaxy formation. The different
energetic phenomena associated to growing black holes and Active Galactic
Nuclei (AGN), their cosmological evolution and the observational techniques
used to unveil them, are the subject of this chapter. In particular, I will
focus my attention on the connection between the theory of high-energy
astrophysical processes giving rise to the observed emission in AGN, the
observable imprints they leave at different wavelengths, and the methods used
to uncover them in a statistically robust way. I will show how such a combined
effort of theorists and observers have led us to unveil most of the SMBH growth
over a large fraction of the age of the Universe, but that nagging
uncertainties remain, preventing us from fully understating the exact role of
black holes in the complex process of galaxy and large-scale structure
formation, assembly and evolution.Comment: 46 pages, 21 figures. This review article appears as a chapter in the
book: "Astrophysical Black Holes", Haardt, F., Gorini, V., Moschella, U and
Treves A. (Eds), 2015, Springer International Publishing AG, Cha
The properties of the star-forming interstellar medium at z = 0.84-2.23 from HiZELS : mapping the internal dynamics and metallicity gradients in high-redshift disc galaxies
We present adaptive optics assisted, spatially resolved spectroscopy of a sample of nine Hα-selected galaxies at z = 0.84-2.23 drawn from the HiZELS narrow-band survey. These galaxies have star formation rates of 1-27 M⊙ yr-1 and are therefore representative of the typical high-redshift star-forming population. Our ˜kpc-scale resolution observations show that approximately half of the sample have dynamics suggesting that the ionized gas is in large, rotating discs. We model their velocity fields to infer the inclination-corrected, asymptotic rotational velocities. We use the absolute B-band magnitudes and stellar masses to investigate the evolution of the B-band and stellar-mass Tully-Fisher relationships. By combining our sample with a number of similar measurements from the literature, we show that, at fixed circular velocity, the stellar mass of star-forming galaxies has increased by a factor of 2.5 between z = 2 and 0, whilst the rest-frame B-band luminosity has decreased by a factor of ˜ 6 over the same period. Together, these demonstrate a change in mass-to-light ratio in the B band of Δ(M/LB)/(M/LB)z=0 ˜ 3.5 between z = 1.5 and 0, with most of the evolution occurring below z = 1. We also use the spatial variation of [N II]/Hα to show that the metallicity of the ionized gas in these galaxies declines monotonically with galactocentric radius, with an average Δ log(O/H)/ΔR = -0.027 ± 0.005 dex kpc-1. This gradient is consistent with predictions for high-redshift disc galaxies from cosmologically based hydrodynamic simulations
- …
