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ABSTRACT
Next-generation radio surveys will yield an unprecedented amount of data, warranting analysis
by use of machine learning techniques. Convolutional neural networks are the deep learning
technique that has proven to be the most successful in classifying image data. Capsule networks
are a more recently developed technique that use capsules comprised of groups of neurons
that describe properties of an image including the relative spatial locations of features. This
work explores the performance of different capsule network architectures against simpler
convolutional neural network architectures, in reproducing the classifications into the classes
of unresolved, FRI, and FRII morphologies. We utilize images from a LOFAR survey which
is the deepest, wide-area radio survey to date, revealing more complex radio-source structures
compared to previous surveys, presenting further challenges for machine learning algorithms.
The four- and eight-layer convolutional networks attain an average precision of 93.3 per cent
and 94.3 per cent, respectively, compared to 89.7 per cent obtained with the capsule network,
when training on original and augmented images. Implementing transfer learning achieves
a precision of 94.4 per cent, which is within the confidence interval of the eight-layer
convolutional network. The convolutional networks always outperform any variation of the
capsule network, as they prove to be more robust to the presence of noise in images. The
use of pooling appears to allow more freedom for the intra-class variability of radio galaxy
morphologies, as well as reducing the impact of noise.

Key words: instrumentation: miscellaneous – methods: miscellaneous – methods: data anal-
ysis, surveys – radio continuum: galaxies – radio continuum: general.

1 IN T RO D U C T I O N

Active Galactic Nuclei (AGNs) are energetic, astrophysical sources
powered by accretion on to supermassive black holes in galaxies
(Fabian 1999; Padovani 2017). There are many classes of AGNs,
where one subset is radio-loud AGN, also known as radio galaxies.
The two main ways of classifying radio galaxies is by the properties
of optical emission lines (Hine & Longair 1979) or by the radio
morphology of the jets (Bicknell 1995). The classification of radio
galaxy morphology is of research interest in wide-field radio surveys
as it correlates with physical properties of the galaxy such as the
total power, dust distribution, surrounding environment, and galaxy
and cluster evolution (Saripalli 2012). Radio galaxies can present
compact or extended radio morphologies (Miraghaei & Best 2017)

� E-mail: vesna.lukic@hs.uni-hamburg.de (Vl); mbrueggen@hs.uni-
hamburg.de (MB)

and are often classified into either the FRI (core-bright) or FRII
(edge-bright) galaxies (Fanaroff & Riley 1974). Rarer are hybrid
galaxies, which fall in between FRI and FRII galaxies (Gopal &
Wiita 2000). There are physical differences between the two classes.
The jets of FRIs are less powerful, and are disrupted quite close
to the core of the radio galaxy, while the jets of FRII are more
powerful and stay relativistic for much larger distances, terminating
in a shock (Contopoulos, Gabuzda & Kylafis 2015). The transition
from FRII to FRI radio galaxies is thought to occur as the jet
becomes sub-relativistic (Bicknell 1994). As the environment plays
a large role in the morphology of radio galaxies, it is not unusual
for both lobes to have different appearances, especially the FRIs.
The dynamics of the ambient gas and the motion of the host galaxy
can create tails or distort the jets through ram pressure stripping
(Feretti 2003). Compact radio sources may be either scaled-down
(young) versions of the FRI or FRII sources, or may represent
a physically distinct population (Baldi, Capetti & Giovannini
2015).

C© 2019 The Author(s)
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Radio surveys map ever-increasing numbers of radio sources.
The visual classification of such sources becomes increasingly
time consuming and will be completely unfeasible with the rapidly
increasing data volumes. Recent and upcoming surveys, such as the
LOFAR Two-Metre Sky Survey (LoTSS; Shimwell et al. 2017),
the Evolutionary Map of the Universe (EMU; Norris et al. 2011),
and surveys with the Square Kilometre Array (SKA; Prandoni &
Seymour 2015) will detect many millions of galaxies. Citizen sci-
ence projects have been used for classifying astronomical sources,
for example in Galaxy Zoo 2 (Willett et al. 2013, Dieleman et al.
2015) and Radio Galaxy Zoo (RGZ, Banfield et al. 2015). It is also
possible to use automated techniques to classify images. Ultimately,
these approaches can be used as a training set for machine learning
algorithms, in particular deep learning algorithms, when the data
are high-dimensional (Wu et al. 2018).

The most prominent wide-area radio surveys, such as the Faint
Images of the Radio Sky at Twenty centimetres (FIRST; Becker,
White & Helfand 1995) and the NRAO VLA Sky Survey (NVSS;
Condon et al. 1998), have mostly been conducted at GHz frequen-
cies. In contrast, the LoTSS survey, which is the focus of this
work, has been carried out at 150 MHz with the Low-Frequency
Array (LOFAR). As such, LOFAR can detect synchrotron emission
from older populations of relativistic electrons (which have steeper
spectra) found in the extended regions of sources. Furthermore,
with its combination of long and short baselines, LoTSS offers both
a high angular resolution (≈6 arcsec) for detailed mapping, and a
high sensitivity to extended emission.

The cross-identification of radio sources with their optical or
infrared hosts helps to associate radio components to sources
and to determine properties, such as host galaxy redshift and
mass. Previously, cross-identification has been done using visual
input from citizen scientists input in RGZ (Banfield et al. 2015),
and automated methods in cross-identifying radio emission with
infrared counterparts have been explored (Alger et al. 2018). In the
LoTSS survey (Shimwell et al. 2019) the radio sources have been
cross-matched with their optical counterparts. For the majority of
sources a maximum-likelihood ratio test was adequate because the
sources are small and unresolved. For sources that are too large
or complex, a visual host identification has been applied (Williams
et al. 2019).

The first published work on the automated image classification of
radio sources using deep learning algorithms was Aniyan & Thorat
(2017) where they use a limited number of original radio galaxy
images and apply aggressive augmentation to classify sources into
FRI, FRII, and bent-tailed classes. In previous work, we have shown
that it is possible to classify radio sources into four categories based
on the number of components belonging to the radio source and
produced a classification accuracy of 94.8 per cent (Lukic et al.
2018) on the RGZ DR1 catalogue (Wong et al, in preparation).
Alhassan, Taylor & Vaccari (2018) developed a convolutional neural
network model to classify FIRST sources into four classes including
compact, FRI, FRII, and bent-tailed sources, achieving overall
accuracies >90 per cent. Wu et al. (2018) use regional convolutional
networks to localize, recognise, and classify sources, the best model
obtaining a final mean average precision of 83.4 per cent, using the
number of peaks and number of components of a particular radio
source. This approach, however, does not always lend itself easily to
clear morphological classifications in the FRI or FRII cases because
the relative orientations of components are not taken into account.

The aim of this work is to compare the performance of two set-ups
of deep learning networks (capsule networks and convolutional net-
works) in the classification of radio sources. As a data set, we used

the first data release of the LoTSS survey (Shimwell et al. 2019).
Capsule networks are a more recently developed deep learning
technique, invented to help preserve the local feature information
within an image, which can be degraded in traditional convolutional
networks, owing to the pooling operation. In the context of radio
galaxies, the orientation and pattern of the emission is important
as it determines the morphological classification. The data from
the LOFAR LoTSS survey reveals sources in unprecedented detail,
therefore one source that had a particular morphology in an earlier
survey may be revealed to have a different one when imaged with
LOFAR.

This paper is outlined as follows: Section 2 describes the LOFAR
data set, including catalogue information and image data as well
as how the classifications are generated. Section 3 discusses the
pre-processing and augmentation applied to the original images.
Section 4 describes the theory behind the two deep learning
approaches explored, namely convolutional neural networks and
capsule networks. Section 5 explores the performance of different
capsule network models against standard convolutional neural
network set-ups, including transfer learning on the LOFAR data,
when training on different sets of images. The results are also
discussed in Section 5. Section 6 summarizes our overall findings.

2 LO FA R H E T D E X V 1 . 0 DATA S E T

2.1 Source cut-outs

The sources in our data set originate from a 424 square degree
region of the HETDEX Spring Field, mapped from the LoTSS,
and release as Data Release 1 (Shimwell et al. 2019). The LoTSS
survey detects a total of 325 694 sources where the signal is five
times that of the noise and the density of sources is a factor of
approximately 10 times higher than the most sensitive existing
very wide-area radio-continuum surveys. We use v1.0 of the value-
added catalogue for the HETDEX-area data release of LoTSS.
The first step in creating the value-added catalogue involved using
PyBDSF1 to produce a radio source catalogue for the field, after
which a decision tree was used to further categorize the sources,
with details provided in Williams et al. (2019). After filtering the
325 694 sources to only include those classified as resolved leaves
24 096 sources (Shimwell et al. 2019). The catalogue also contains
180 columns describing the properties, such as redshift, position etc,
of the sources. In order to exclude star-forming galaxies and sources
with less certain redshift values, we used the AGN subsample of the
LoTSS catalogue, derived by Hardcastle et al. (2019) leaving 6708
sources. We note that this is a substantial limitation of the machine
learning approach when using radio galaxy image data only, as
it is generally not always possible to filter out the star-forming
galaxies without the use of additional data at other wavelengths. The
source classifications were only available for those 6708 sources
classified as AGNs and with known redshifts, therefore the analysis
is restricted to this set. However, the accurate knowledge of redshift
is not strictly required for morphological classification.

Finally, we assume that there is one source per image. Square
cut-outs of each source are produced from the FITS images, where
the cut-out size is determined by the catalogued size of the radio
source. These range from size (66,66) pixels up to (2342,2342)
pixels. The size of the pixels is roughly 1.5 × 1.5 arcsec. Fig. 1

1http://www.astron.nl/citt/pybdsf/.
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Morphological classification of radio galaxies 1731

Figure 1. Histogram of sizes (in pixels per side) of the filtered cut-out
images. The total number of images is 6708.

shows the histogram of the side length in pixels of the images for
these 6708 samples.

2.2 Classifications

The LoTSS association and cross-identification effort (Williams
et al. 2019) was a project in which expert astronomers were
tasked with characterizing the radio emission for sources larger
than 15 arcsec . Indicated were the locations of the peaks and
extents of the emission, and whether there was one or more sources
present.

The 6708 source sample (see Section 2.1) were classified into six
classes using an automated technique (Mingo et al. in preparation).
The six classes are Unresolved-1, FRI, FRII, Hybrid-1, Hybrid-2,
and Unresolved-2, all of which are described in further detail as
follows. After the host galaxy location had been identified through
the LoTSS identification effort (Williams et al. 2019), the distances,
d1 and d2, were determined as the distances in pixels from the host
galaxy to the brightest peaks of emission on both sides of the source
(shown with points marked with Y/inverted Y in Fig. 2). Similarly,
Maxd1 and Maxd2 were determined as the maximum extents of
the source in each direction (marked with triangles on the plots),
out to the masked 4rms limit. A 120 deg aperture cone is used
to find those along the direction of d1, d2. The comparison of
d1/Maxd1 and d2/Maxd2 is then used to classify the sources. If, on
both sides, the peak is less than half of the distance between the
position of the host galaxy and the maximum extent of the emission
(i.e. d1/Maxd1 < 0.5 and d2/Maxd2 < 0.5) then the source is
classified as an FRI, making up 15 per cent of the total sources.
Likewise, if it is more than half of the distance (d1/Maxd1 > 0.5
and d2/Maxd2 > 0.5) then the source is classed as an FRII. The
FRIIs make up 7 per cent of the total sources.

In addition to the FRI and FRII labels, four further labels were
defined. Hybrid-1 and Hybrid-2 classes refer to sources which show
FRI morphology on one side of the source and FRII on the other,
with the ‘1’ or ‘2’ reflecting the classification of the brighter of
the two sides. The Hybrid classes together make up 6 per cent of
the sources. Unresolved-1 sources correspond to those images that
have less than 5 pixels of signal above 4rms, making up 22 per cent
of the sources. This class is useful as it indicates which images are
too noisy to be characterized into a particular class (note that it is

Figure 2. The masked array from which classifications are generated. The
red cross indicates the position of the optical source, the black Y’s indicate
the peaks of the emission, and the blue triangles indicate the maximum
extents of emission. The optical position is calculated from the user’s clicks
on the LoTSS images, or from the maximum likelihood method. The Y’s
and blue triangles are outputs from the automated classification code.

Table 1. The number of original and augmented sources, divided into
training and testing sets. The percentage of samples in each class is also
given for the test set. Since only original images should be used in the test
set, the augmented images are used for training only.

Class # Orig. (Train) # Orig. (Test) # Aug. # Total

Unres. 1156 301 (50.2 %) 4371 5828
FRI 765 219 (36.5 %) 5904 6888
FRII 380 80 (13.3 %) 2760 3220

Total 2301 600 13 035 15 936

different from the Unresolved sources previously discussed, which
were based on the extent of the overall radio emission). Finally, the
Unresolved-2 class contains a collection of mostly FRI and FRII
sources that were unable to be classified accurately by the automated
algorithm as they were too small, which makes up 50 per cent of
the sources. Fig. 2 shows an example image source, demonstrating
how the classification labels were generated.

In this work, we have chosen the Unresolved-1 (henceforth called
Unresolved), FRI, and FRII classes to evaluate the performance
of our deep learning algorithms, as these had the most confident
classifications. There are 2901 original images in total, as shown in
Table 1.

The automated classification technique (Mingo et al. in prepa-
ration) involved using masked 4rms arrays (where emission below
4rms is removed and potential unassociated emission is masked),
rather than the raw FITS data. We define unassociated emission as
radio emission which does not appear to belong to the radio source in
question. A flood-filling algorithm2 and masking techniques have
additionally been applied in order to identify and use associated
structures and consequently remove unassociated emission from
the image (Mingo et al. in preparation). On the other hand, this
work emphasizes using the raw FITS images as the input to the deep

2http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.
measure.label
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Figure 3. Showing morphology samples of the FITS cut-outs when con-
verted to png images using the ‘hot’ colourmap. The top row shows the
‘Unresolved class’, middle row shows the FRI class, and the bottom row
shows FRII. There are varying levels of noise and the occasional potentially
unassociated emission present in the images.

learning algorithms, to see if they could be trained to cope with
unassociated emission and unfiltered noise. After visual inspection
we found there were approximately 1 per cent of images containing
potentially unassociated emission, whereas the majority of the
images contain varying levels of noise.

In cases where the calibration did not perform as expected, the
source will not be de-convolved accurately, causing flux leakage.
This could result in the source being misclassified, leading to label
errors. After inspecting several batches of images, we estimated
the amount of labels containing errors to be less than 6 per cent,
when considering both FRIs and FRIIs. Since larger sources are
easier to classify, there is a decreased likelihood that they will be
mislabelled, therefore the size of the source affects the presence of
noisy labels. However, pre-filtering is applied to ensure the effect is
not very large.

Fig. 3 shows typical examples of source types across the three
classes. It is evident that there are varying levels of noise present
in the images, presenting the largest hindrance to the deep learning
algorithms’ ability to classify the sources accurately. One of the
aims of this work is to see how well the algorithms can classify
the sources in the presence of such undesirable features, present
in the original radio images (FITS files). We also compare the
results obtained when using the masked 4rms clipped arrays (see
Section 5.3), where emission below 4rms is removed and potential
unassociated emission is masked.

3 ME T H O D S

We use the radio galaxy image FITS cut-outs from version 1.0 of
the LoTSS DR1 value-added catalogue (Williams et al. 2019). The
extended source identifications do not differ from the final version
to a large extent.

3.1 Pre-processing

Since the size of each cut-out varies, they first need to be made the
same size. The FITS images have been resized to (200,200) pixels,
where the smaller images have been padded with zeros around
the edges, and the larger images have been downsampled, using
bicubic interpolation. The sizes of the arrays vary across all three
classes. Following this, the images are centred on the position of
the optical source, ensuring its position is at (100,100). We crop to
the inner (100,100) pixel part of the image as the source is likely
to be contained in this interval and to reduce the amount of data
input into the network. The pixel values, representing brightness in
mJy beam−1, were normalized by dividing by the maximum value in
each image, therefore the values are contained within the [0,1] range.
The images are taken at 150 MHz. We apply the ‘hot’ colourmap
from the PYTHON MATPLOTLIB library, which converts the images
from a single channel numpy array to an RGB png image. This is
done by assigning a colour (RGB vector) according to the value in
the single channel array. For example, values close to 1 are bright
yellow in the ‘hot’ colourmap scheme, therefore (r,g,b) ≈ (1,1,0.99).
The conversions to the RGB vector are provided.3 The conversion
is done to make the arrays more amenable to deep learning analysis
and has no bearing on the flux values. The number of sources in
each class is given in Table 1.

Cropping the images to (100,100) pixels, instead of using the
originally resized images of (200,200) pixels, reduces the impact
of radio emission that is potentially unassociated with the main
source in the centre. We have also experimented with using central
sizes other than (100,100) pixels, however they resulted in worsened
performance metrics. Smaller images tended to have some associ-
ated emission truncated, whereas larger images encapsulated more
unassociated emission. The cropping still preserved the general
noise characteristics surrounding the source.

The upsizing of images should not have any detrimental effects
on image quality, however the downsizing may cause effects such
as slight distortion of the radio emission due to the interpolation.

3.2 Image augmentation

Deep learning algorithms generally require large numbers of la-
belled images in order to make predictions more successfully and
to reduce the effect of overfitting, in which the algorithm memorizes
the training samples and therefore the model fails to generalize on an
independent data set. More images can be generated artificially, by
performing simple transformations to the original data (Krizhevsky,
Sutskever & Hinton 2012). As such, we apply translation, rotation,
and flipping to generate more images. In using translation, we
initially use a random number that shifts the image between 0 and 20
pixels in any of the four directions, using the condition that if such a
translation moves the brightest pixel out of the image, the translation
is reduced to 10 per cent of the original value. This is to reduce the
possibility that part of a radio component will be shifted out of the
image. The images have been rotated randomly in multiples of 90
deg only in order to avoid interpolation artefacts. We note that since
there is a limited range of rotation applied, it is not enough to ensure
complete rotational invariance in our models. Both horizontal and
vertical flipping have been applied at random. The augmentation
of the FRI and FRII sources has been done keeping their overall

3y = (0,0.36): (r,g,b) ≈ (x = y/0.36,0,0).y = (0.36,0.74): (r,g,b) ≈ (1,x =
(y−0.37)/0.37,0).y = (0.74,1): (r,g,b) ≈ (1,1,x = (y−0.75)/0.25).
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proportions similar in number to the original data set as this resulted
in improved performance. The number of original and augmented
images used in this work is given in Table 1. Image augmentation is
applied on both the original LOFAR images, as well as the masked
4rms arrays.

4 D E E P L E A R N I N G A L G O R I T H M S

The most successful class of machine learning methods in the
context of extracting information from high-dimensional data is
deep learning, which has achieved unprecedented performance
in a variety of domains such as image recognition, sentiment
analysis, and genomics (LeCun, Bengio & Hinton 2015). Their
ability to learn multiple representations of data lies in their stacked
layer architecture. The most commonly used implementation of
deep learning has to date been convolutional neural networks.
However, more recent advances were made in addressing the lack
of rotational invariance in convolutional neural networks through
the development of capsule networks.

4.1 Convolutional neural networks

Neural networks and deep learning algorithms are generally trained
using the backpropagation algorithm, where a gradient descent
optimization algorithm is used to minimize the error between the
predictions of the network and the input labels by calculating
the gradients and adjusting the weights accordingly (Rumelhart,
Hinton & Williams 1986). A deep fully connected neural network
becomes time consuming and computationally intensive to train.
Convolutional neural networks employ smaller sized filters that
scan across the image and extract features, which greatly reduces
the dimensionality compared to using adjacent layers of fully
connected neurons and enforces parameter sharing and therefore
translational invariance (Karpathy 2016). Spatial pooling layers are
typically inserted between at least one convolutional layer which
further reduces the dimensionality of features propagated through
the network. In max pooling, the maximum value of a certain region
of the image is output into the next layer. However, since the pooling
operation summarizes the information in a local part of the image,
the global feature information within the image tends to degrade.

4.2 Capsule networks

Capsule networks (Sabour, Frosst & Hinton 2017) have been devel-
oped to preserve the relative locations of features within images and
thus model the hierarchical relationships better. Although traditional
neural networks output a single activation value, capsule networks
are higher dimensional and output a vector representing a group of
parameters such as orientation, skew, thickness etc., depending on
the input. The overall length of these vectors give the probability
that the entity exists. Capsule networks have achieved state-of-the-
art performance on the MNIST data set (LeCun et al. 1998) without
data augmentation (Xi, Bing & Jin 2017).

In the context of radio galaxy classification, capsule networks
should be able to preserve the emission pattern features over a large
spatial extent, given an adequate training set size.

Below we summarize the theory behind capsule networks but see
Sabour et al. (2017) for a detailed description. For all capsules above
the first layer of capsules, the input to a capsule sj is a weighted
sum over all prediction vectors from the capsules in the layer below,
given by multiplying the coupling coefficients cij by the output ui

of a capsule in the layer below by a weight matrix Wij, as shown in
equation (1)

sj =
∑

i

cijWijui . (1)

The coupling coefficients cij are determined by a routing softmax
function given by equation (2)

cij = ebij

∑
k ebik

. (2)

The coupling coefficient cij is the level of agreement between the
predicted output of capsules in a layer, to their parent capsules in
the layer above. bij gives the log prior probabilities that capsule i
should be coupled to capsule j.

The vector length is calculated as shown in equation (3)

vj = ||sj ||2
1 + ||sj ||2

sj

||sj || , (3)

where vj is the vector output of capsule j and sj is its total input.
This output gives the probability that a specific property exists in
the input to the capsule that is represented by the capsule. The
vector output vj is an activation function that is also referred to as
a squashing function as it shrinks short vectors to near zero if a
property is not present in the capsule, and long vectors to lengths
close to 1 if the property exists.

The agreement aij for updating log probabilities and coupling
coefficients is given by equation (4)

aij = vj .Wijui . (4)

A margin loss function is used in order to determine whether a radio
galaxy of a particular class is present, which has the form given by
equation (5):

Lk = Tk max(0, m+ − ||vk||)2

+ λ(1 − Tk) max(0, ||vk|| − m−)2, (5)

where Tk = 1 if a radio galaxy of class k is present and m+ =
0.9 and m− = 0.1, to ensure that the vector length remains within
reasonable bounds. The λ down-weighting function is introduced
for numerical stability and suggested to be set at 0.5.

The mean squared error difference between the reconstructed
image from the decoder (the part of the Capsule network after
LabelCaps) and the input image acts as a regularizer for the capsule
network, such that near-perfect reconstructions will produce a near-
zero error and poor reconstructions will produce a large error. The
reconstruction loss is scaled down by 0.0005 so it does not dominate
the margin loss during training, and the coefficient for the default
model is designed for the MNIST digits which have an image size
of 28 × 28, thus the coefficient is worked out to be 0.0005 × 28 ×
28 = 0.392.

The architecture and number of parameters in the default Capsule
network used in the current work is shown in Table 2.

4.3 Deep learning parameters

There are several deep learning implementations currently available
for use. This work uses Keras4 with the TensorFlow5 backend and
PYTHON version 2.7.14.

4https://keras.io/preprocessing/image/.
5https://www.tensorflow.org.
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Table 2. Showing architecture for the default capsule network model.

Layer Output shape # Params

Input 1 (None, 100, 100, 3) 0
conv2d (None, 92, 92, 256) 62 464
PrimaryCap conv2d (None, 42, 42, 6) 124 422
PrimaryCap reshape (None, 3528, 3) –
PrimaryCap squash (None, 3528, 3) –
LabelCaps (None, 3, 3) 95 256
Input 2 (None, 3) –
mask (None, 9) –
capsnet (None, 3) –
decoder (None, 100, 100, 3) 3878 960

Total 4161 102

Table 3. ConvNet-4 architecture. A filter size of 5 is used in
the convolutional layers.

Layer Output shape # Params

Input (None, 100, 100, 3) 0
conv2d (None, 100, 100, 16) 1216
conv2d (None, 100, 100, 16) 6416
maxpool2d (None, 50, 50, 16) –
dropout (None, 50, 50, 16) –
conv2d (None, 50, 50, 16) 6416
conv2d (None, 50, 50, 16) 6416
maxpool2d (None, 25, 25, 16) –
dropout (None, 25, 25, 16) –
flatten (None, 10000) –
dense (None, 500) 5000 500
dropout (None, 500) –
dense (None, 3) 1503

Total 5022 467

We use the Adam optimizer (Kingma & Ba 2014) with the default
learning rate of 0.001. In order to keep more parameters the same
between the models, both the convolutional and capsule network
models are trained using a batch size of 100, for 50 epochs.

The deep learning task is a multiclassification problem, where
the models output a three-dimensional vector representing the
probability that the object belongs to each class. The predicted
class is chosen as the one with the largest probability value. As the
probabilities are independent, there is no constraint that they need
to add to unity.

The models are trained using CPUs from 27 available Intel XEON
CPU nodes with six available cores per node on a computing cluster
at the University of Hamburg.

4.3.1 ConvNet-4 parameters

We use an architecture of two pairs of stacked convolutional layers
with pooling layers in between, as shown in Fig. 4, with parameters
given in Table 3. This model is referred to as ConvNet-4. Using
two adjacent convolutional layers with smaller filter sizes obtained
improved results compared to using a single larger convolutional
layer, and also reduced the number of parameters (Simonyan
& Zisserman 2015). We use the categorical cross-entropy cost
function6 and 16 filters of size 5 × 5 across all layers, as well
as the default learning rate decay of 0. In order to reduce the effect

6https://keras.io/losses/#categorical crossentropy.

Figure 4. The ConvNet-4 architecture. The input to the network is a 100
× 100 × 3 image. Showing an example input image with features detected
at the second and fourth convolutional layers, after pooling, at the end of
training (50 epochs). We show four feature maps for each of the two outputs.

of overfitting, dropout layers are used. A dropout value of 0.25
is used after each pair of convolutional layers, and a value of 0.5
in between the dense layers. A penalty term is added to the cost
function using L2 regularization (Ng 2004) in the first dense layer.
All the convolutional layers use the ReLU activation function (Nair
& Hinton 2010), and the softmax activation function at the final
layer where classifications are made. There are 5022 467 trainable
parameters in total.

4.3.2 ConvNet-8 parameters

In order to investigate the performance for more complex convo-
lutional networks, we can add additional layers. The ConvNet-8
model uses an architecture of four pairs of stacked convolutional
layers with pooling layers in between. There are also an increasing
number of feature maps with each subsequent double stacking of
convolutional layers, as shown in Table 4. The architecture also uses
smaller feature maps of size 3 × 3. There are 7446 259 trainable
parameters in total.

4.3.3 CapsNet parameters

Finally, we explore several variations of capsule network models.
We downloaded the original CAPSULENET7 code implemented in
Keras that was built for the MNIST data set (Sabour et al. 2017),
and modified the code to use our data sets, vary the models from
the original architecture, and to calculate the metrics. The original
architecture contains approximately 58M parameters, which is more

7https://github.com/XifengGuo/CapsNet-Keras/blob/master/capsulenet.
py.
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Table 4. ConvNet-8 architecture. A filter size of 3 is used in
the convolutional layers.

Layer Output shape # Params

Input (None, 100, 100, 3) 0
conv2d (None, 100, 100, 32) 896
conv2d (None, 100, 100, 32) 9248
maxpool2d (None, 50, 50, 32) –
dropout (None, 50, 50, 32) –
conv2d (None, 50, 50, 64) 18 496
conv2d (None, 50, 50, 64) 36 928
maxpool2d (None, 25, 25, 64) –
dropout (None, 25, 25, 64) –
conv2d (None, 25, 25, 128) 73 856
conv2d (None, 25, 25, 128) 147 584
maxpool2d (None, 13, 13, 128) –
dropout (None, 13, 13, 128) –
conv2d (None, 13, 13, 256) 295 168
conv2d (None, 13, 13, 256) 590 080
maxpool2d (None, 7, 7, 256) –
dropout (None, 7, 7, 256) –
flatten (None, 12544) –
dense (None, 500) 6272 500
dropout (None, 500) –
dense (None, 3) 1503

Total 7446 259

than 14× the number of parameters as for the ConvNet-4 model.
We therefore simplified the architecture to one having just over
4M parameters, and refer to this as the default model. The original
CapsuleNet model is simplified in order to have the same order of
magnitude as the parameters in the ConvNets and to help prevent
overfitting.

The default architecture of CapsNet and decoder is illustrated in
Fig. 5 and the number of parameters is given in Table 2. In essence
it is comprised of an encoder and decoder. The encoder consists of

a convolutional layer, which extracts features in the image, which
are then input into the first capsule layer (PrimaryCaps), whose
function is to take the 256 × 9 × 9 output of the convolutional
layer and produce combinations of the detected features. The
output of the PrimaryCaps layer is then sent to the LabelCaps
layer, which produces one three-dimensional capsule for each
of the three radio galaxy classes. Routing is used between the
PrimaryCaps layer and the LabelCaps layer such that the level of
agreement of feature existence can be quantified and contribute to
the vector length of the capsule. The decoder refers to the part of
the network after the LabelCaps layer (the three dense layers at the
end). There are 4161 102 free parameters in the default CapsNet
model.

We use 256 filters in the first convolutional layer, a filter size of
9 in both the first Convolutional layer and PrimaryCaps layer, three
capsules in the PrimaryCaps and LabelCaps layers, two channels
in the PrimaryCaps and the decoder contains (64 ,128) nodes. We
use the default set-up of three routings and a learning rate of
0.001 with a decay of 0.9. The first convolutional layer uses the
ReLU activation function. CapsNet has image augmentation built
into the training of the model, which we disable in order to use
our augmentation technique, that allows more control over which
classes get augmented and the type of transformations that are used.
For the default CapsNet model, there are 4161 102 parameters,
which is a very similar number of parameters that was used for
ConvNet-4.

In addition to the default CapsNet model, we experiment with two
other CapsNet models. In the first of these models (Inc. filtersize),
we set the filter size to 24 and 18 in the first Convolutional layer and
PrimaryCaps layer, respectively, and slide the filters across using
a stride of 4 in the convolutional layer. The inc. filtersize model
has 4819 470 parameters. In the second model (Inc. decoder), we
increase the complexity of the decoder to (128, 256) nodes in the
dense layers and the loss function of the decoder weight is increased
from 0.392 to 5, respectively. The weight is calculated by taking the
scaled-down reconstruction loss and multiplying it by the size of the

Figure 5. The default architecture for CapsNet, using three classes. The input to the network is a 100 × 100 × 3 image. The encoder is the part of the network
that encapsulates the convolutional layer up to and including the LabelCaps layer. The decoder refers to the final three dense layers. An example of features
detected by the PrimaryCaps layer prior to reshaping and squashing is shown, for the given input image. There is a small amount of extended emission to the
top right of the image that appears to be unassociated with the main source in the centre, which the capsule network preserves, suggesting that it is not robust
to potential unassociated sources. Additionally, the feature maps appear to show extra distortion in the core of the source.
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images 0.0005 × 100 × 100 = 5. There are 8026 446 parameters
in the inc. decoder model.

We chose to increase the filters from a size of 9 pixels in the inc.
filtersize model because the original filter sizes that were designed
for the MNIST image sizes of (28,28) pixels are likely too small
compared to what would be needed for our (100,100) pixel images.
We also experimented with increasing the number of nodes and
weight loss of the decoder in the inc. decoder model to better account
for the noise and potential unassociated emission in the data set, as
well as more variability in and between classes.

5 R ESULTS

Due to the inherent stochasticity of training deep learning models,
each run can produce slightly different results. We therefore train
each model five times. The training data are also shuffled for each
run to ensure there is no correlation between subsequent samples.
There are several classification metrics that can help evaluate the
performance of a classifier. In imbalanced class problems, the clas-
sification accuracy alone has several weaknesses in distinguishing
between the performance of models (Hossin & Sulaiman 2015).
The precision, recall, and F1 scores are more informative measures
of performance compared to using the classification accuracy.
Precision refers to the fraction of true positives returned among
all returned positive instances, recall is the fraction of true positives
that are identified correctly, which also gives an indication of the
sensitivity of the classifier. The F1 score is the harmonic mean of
precision and recall, and can be interpreted as the average of the
precision and recall values. The accuracy is the total proportion of
correct predictions. Precision, recall, F1 score, and accuracy are
defined in equations (6)–(9).

Precision = TP

TP + FP
(6)

Recall = TP

TP + FN
(7)

F1 score = 2 × Precision × Recall

Precision + Recall
(8)

Accuracy = TP + TN

TP + FP + TN + FN
, (9)

where TP refers to the true positives, FP refers to the false positives,
and FN refers to false negatives. A true positive is when the
prediction matches the label. A false positive is when the positive
class is incorrectly predicted. A false negative is when the positive
class is predicted to be in another class.

We also calculate the 95 per cent confidence interval using the
mean and standard deviation of the metrics to account for the
variability in performance across the runs. We declare a model to be
statistically significantly better than another model if the mean of
its metrics is higher than the 95 per cent confidence interval of the
other models metrics. In order to ensure a fair comparison, the same
training and testing sets were used for the ConvNet and CapsNet
architectures.

The same set of data is used for both validation and testing when
running the models, with the exception of the application of early
stopping (results shown in Section 5.4.4). When early stopping is
used, the validation data are used to determine when to stop the
training. Otherwise, the use of the same data set for validation and

Table 5. The average metrics (in percentages) across each of the classes in
(1) the original LOFAR data set, (2) the original and augmented data set,
(3) the original 4rms clipped data set, and (4) the original and augmented
4rms clipped data set for the ConvNet-4 model. Five runs were done in total,
using 600 samples in the test set.

Class Precision Recall F1 score Accuracy

(1)
Unres. 95.7 ± 0.9 96.7 ± 1.4 96.2 ± 0.9 95.9 ± 0.9
FRI 86.2 ± 2.4 86.8 ± 1.1 86.5 ± 1.0 89.9 ± 0.9
FRII 68.0 ± 1.1 63.5 ± 2.1 65.6 ± 1.0 90.9 ± 0.2

Avg. 88.5 ± 0.8 88.7 ± 0.8 88.6 ± 0.9 93.1 ± 0.8

(2)
Unres. 98.1 ± 0.4 98.2 ± 0.5 98.1 ± 0.4 98.0 ± 0.4
FRI 92.3 ± 0.9 93.3 ± 1.3 92.3 ± 0.2 94.2 ± 0.1
FRII 80.9 ± 2.0 75.2 ± 4.9 77.8 ± 1.9 94.2 ± 0.2

Avg. 93.3 ± 0.2 93.4 ± 0.2 93.3 ± 0.2 96.2 ± 0.2

(3)
Unres. 97.9 ± 0.3 98.1 ± 0.5 98.0 ± 0.2 97.9 ± 0.2
FRI 90.4 ± 0.7 90.0 ± 0.6 90.2 ± 0.4 92.8 ± 0.3
FRII 72.1 ± 0.6 72.2 ± 1.6 72.1 ± 0.8 92.5 ± 0.2

Avg. 91.8 ± 0.2 91.9 ± 0.3 91.8 ± 0.3 95.5 ± 0.2

(4)
Unres. 98.7 ± 0.6 99.7 ± 0.2 99.2 ± 0.2 99.2 ± 0.2
FRI 91.5 ± 0.9 94.9 ± 0.6 93.1 ± 0.4 94.9 ± 0.3
FRII 88.1 ± 1.3 75.5 ± 2.3 81.3 ± 1.4 95.3 ± 0.3

Avg. 94.9 ± 0.2 94.7 ± 0.3 94.7 ± 0.2 97.3 ± 0.1

testing is of no consequence, as the weights that are modified using
the training set are applied to the validation/test set to calculate the
loss. No adjustment is made to the weights using the validation set.
At the conclusion of training, the final weights are applied to the
validation/test set and the metrics are calculated.

Section 5.1 of the results shows the classification metrics across
the two deep learning techniques when using the original data only,
with 2301 (79 per cent) samples for training, and 600 (21 per cent)
samples for both validation and testing. The fraction of samples
in each class is given in Table 1 for the test set. Section 5.2 uses
augmented images in addition to the original images and Section 5.3
explores the effects when the 4rms sigma-clipped data are used.

5.1 LOFAR original images

5.1.1 ConvNet-4 and ConvNet-8 models

We use the ConvNet-4 and ConvNet-8 models on the original 2901
images from LOFAR, which have been classified into Unresolved,
FRI, and FRII sources. The results are shown in Tables 5 and 6. Each
epoch consisting of 2301 training samples takes approximately 32
and 66 s to train for ConvNet-4 and ConvNet-8, respectively.

The models perform the best in recovering the images in the
Unresolved class, which could be due to the images being generally
noisier and the sources smaller, compared to the other images. The
recovery of FRIIs is poorer however compared to the FRIs. This
may be because there are fewer examples of images in this class
(460 FRIIs compared to 984 FRIs). Although it can be argued that
the morphological diversity is greater for the FRI class as they can
be straight, bent, or one-sided with a peak at one end, FRIIs contain
lobes that may or may not be connected, therefore the source can
contain either one or two components. We have experimented with
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Table 6. The average metrics (in percentages) across each of the classes in
(1) the original LOFAR data set, (2) the original and augmented data set, and
(3) the original 4rms clipped data set, and (4) the original and augmented
4rms clipped data set, for the ConvNet-8 model. Five runs were done in
total, using 600 samples in the test set.

Class Precision Recall F1 score Accuracy

(1)
Unres. 96.6 ± 1.1 98.8 ± 0.3 97.7 ± 0.5 97.5 ± 0.6
FRI 88.7 ± 1.0 90.4 ± 0.7 89.6 ± 0.5 92.2 ± 0.4
FRII 75.2 ± 4.1 64.5 ± 2.8 69.3 ± 1.1 92.3 ± 0.4

Avg. 90.9 ± 0.4 91.2 ± 0.4 90.9 ± 0.5 94.9 ± 0.4

(2)
Unres. 98.2 ± 0.7 98.4 ± 0.2 98.3 ± 0.3 98.2 ± 0.3
FRI 92.5 ± 0.6 94.0 ± 0.5 93.2 ± 0.4 95.0 ± 0.3
FRII 84.5 ± 1.9 80.0 ± 1.0 82.2 ± 1.1 95.3 ± 0.3

Avg. 94.3 ± 0.2 94.3 ± 0.2 94.3 ± 0.2 96.7 ± 0.1

(3)
Unres. 99.6 ± 0.3 98.8 ± 1.0 99.2 ± 0.5 99.1 ± 0.5
FRI 92.7 ± 1.0 93.4 ± 3.3 93.0 ± 2.1 95.2 ± 1.7
FRII 83.4 ± 9.3 83.4 ± 2.8 83.1 ± 5.8 95.2 ± 1.8

Avg. 95.0 ± 1.6 94.9 ± 1.8 94.9 ± 1.7 97.3 ± 1.0

(4)
Unres. 99.6 ± 0.1 99.1 ± 0.4 99.3 ± 0.2 99.3 ± 0.2
FRI 94.4 ± 0.4 95.2 ± 0.7 94.8 ± 0.4 96.2 ± 0.3
FRII 86.0 ± 1.0 85.8 ± 1.5 85.9 ± 0.6 96.2 ± 0.1

Avg. 96.0 ± 0.2 95.9 ± 0.2 95.9 ± 0.2 97.9 ± 0.2

using different weights for the classes, giving proportionally greater
weights for the FRIIs such that wrong predictions are penalized
more, however the performance remained the same as before, across
all classes. The recall tends to be higher compared to precision for
the FRIs, whereas it is lower compared to precision for the FRIIs.
This is likely due to it being easier to recover sources containing
emission that is more concentrated in one place (in the case of the
FRIs), compared to emission that is further apart.

Examples of detected features in the ConvNet-4 model at the
output of the second and fourth convolutional layers, after max
pooling are shown in Fig. 4. The training and validation losses for
a single run with the ConvNet-4 architecture are shown in Fig. 6.

The use of a more complex architecture (ConvNet-8 compared
to ConvNet-4) appears to improve the classification metrics (Avg.
Recall = 91.2 compared to 88.7, respectively).

5.1.2 CapsNet model

Each epoch consisting of 2301 training samples takes approximately
3.4 min for the default model, 14 s for the inc. filtersize model and
3.5 min for the inc. decoder model. The faster time for the inc.
filtersize model is due to the fact that the feature maps are moved
across the image by 4 pixels (stride of 4) in the first convolutional
layer as opposed to using a stride of 1, therefore the feature maps
are able to scan through the image faster.

Examples of detected features at the PrimaryCaps layer, prior to
the reshape and squashing functions are shown in Fig. 5 for the
default model. Fig. 7 shows the training and validation loss curve
for the default model. Table 7 shows that the default model attains
higher overall metrics compared to the other two CapsNet models
(although this is not always significant).

Figure 6. The training and validation losses for a single run with the
ConvNet-4 architecture using the cross-entropy loss, with 2301 (79 per cent)
samples for training and 600 (21 per cent) samples for testing.

Figure 7. The training and validation losses for a single run with the
default capsule network architecture, using the margin loss as defined
in equation (5), with 2301 (79 per cent) samples for training and 600
(21 per cent) samples for testing. The total loss is obtained by adding the
capsule network loss to the decoder weight multiplied by the decoder loss.

The inc. filtersize model, which was designed with larger filters to
capture more extended emission, for the most part performs as well
as the default model and the metrics for the FRIIs are improved.
However, they tend to be lower for the Unresolved and FRI classes,
which make up the majority of samples. The results are shown in
Table 8.

The inc. decoder model, which uses a more complex decoder,
performs as well as the default model in the metrics for the
Unresolved and FRI classes. However, it performs worse overall
for the FRIIs, as shown in Table 9. This may be due to the more
complex decoder confusing radio emission from the FRIIs with
noise.

As the default CapsNet model performs better overall compared
to the other two CapsNet models, it is chosen as the basis of
comparison against the two ConvNet models across the original
FITS and masked 4rms sigma-clipped data sets.
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Table 7. The average metrics (in percentages) across each of the classes in
the original LOFAR data set, for the default CapsNet model. Five runs were
done in total, using 600 samples in the test set.

Class Precision Recall F1 score Accuracy

(1)
Unres. 92.7 ± 1.4 95.7 ± 0.7 94.2 ± 1.0 93.4 ± 1.2
FRI 78.3 ± 3.1 87.7 ± 1.6 82.7 ± 1.1 86.3 ± 1.3
FRII 66.6 ± 5.1 35.0 ± 13.0 43.1 ± 12.7 88.2 ± 0.8

Avg. 84.0 ± 1.3 84.7 ± 1.5 83.2 ± 2.6 90.1 ± 1.2

(2)
Unres. 96.4 ± 0.6 96.4 ± 0.9 96.4 ± 0.2 96.1 ± 0.2
FRI 85.5 ± 1.4 90.2 ± 0.2 87.8 ± 0.7 90.7 ± 0.6
FRII 75.8 ± 1.8 64.2 ± 0.5 69.6 ± 1.4 92.3 ± 0.4

Avg. 89.7 ± 0.5 89.9 ± 0.5 89.7 ± 0.5 93.7 ± 0.3

(3)
Unres. 97.3 ± 0.5 98.1 ± 0.1 97.7 ± 0.3 97.5 ± 0.3
FRI 90.9 ± 0.7 88.4 ± 0.8 89.6 ± 0.6 92.5 ± 0.5
FRII 72.0 ± 2.6 75.2 ± 3.3 73.6 ± 2.8 92.7 ± 0.8

Avg. 91.6 ± 0.7 91.5 ± 0.7 91.5 ± 0.7 95.0 ± 0.4

(4)
Unres. 98.4 ± 0.1 98.3 ± 0.1 98.3 ± 0.0 98.3 ± 0.0
FRI 92.0 ± 0.6 91.3 ± 1.2 91.7 ± 0.5 93.9 ± 0.4
FRII 80.4 ± 2.4 82.3 ± 1.8 81.2 ± 1.1 94.9 ± 0.4

Avg. 93.7 ± 0.3 93.6 ± 0.4 93.6 ± 0.3 96.2 ± 0.2

Table 8. The average metrics (in percentages) across each of the classes in
the original LOFAR data set, for the inc. filtersize CapsNet model. Five runs
were done in total, using 600 samples in the test set.

Class Precision Recall F1 score Accuracy

Orig.
Unres. 89.6 ± 0.7 94.2 ± 0.3 91.8 ± 0.5 90.8 ± 0.5
FRI 80.4 ± 2.5 79.6 ± 2.9 79.9 ± 0.1 85.0 ± 0.5
FRII 63.2 ± 6.4 50.5 ± 10.8 54.2 ± 6.7 88.4 ± 0.2

Avg. 82.7 ± 0.5 83.0 ± 0.5 82.5 ± 1.1 88.4 ± 0.4

Table 9. The average metrics (in percentages) across each of the classes in
the original LOFAR data set, for the inc. decoder CapsNet model. Five runs
were done in total, using 600 samples in the test set.

Class Precision Recall F1 score Accuracy

Orig.
Unres. 90.6 ± 2.7 95.0 ± 0.8 92.7 ± 1.8 91.6 ± 2.2
FRI 75.1 ± 2.5 87.8 ± 1.9 80.9 ± 2.2 84.5 ± 1.9
FRII 65.8 ± 2.9 22.7 ± 9.0 32.3 ± 10.7 87.4 ± 0.8

Avg. 81.6 ± 2.0 82.7 ± 2.1 80.3 ± 3.0 88.5 ± 1.9

The default CapsNet model still performs significantly worse
compared to the two ConvNets, as it is beyond both their 95 per cent
confidence intervals, across all metrics. The variability in metrics is
higher for the original data set compared to that of the two ConvNets,
as is evident in the generally increased confidence intervals of the
CapsNet model, in Table 7, particularly for the FRIIs.

Fig. 8 shows the Receiver Operating Characteristic (ROC) curves
across the default capsule network and ConvNet-4. ROC curves plot
the true positive rate (recall) against the false positive rate.

Figure 8. ROC curves for both a single run with the default CapsNet model
and the ConvNet-4 model. The curves show that ConvNet-4 outperforms
the default CapsNet across all the classes.

Table 10. The labels and corresponding probability vector of
the default CapsNet network predictions, using four examples
of sources shown in Fig. 10, having probabilities greater than
0.5 across two classes.

Source Label Probability vector (Unres., FRI, FRII)

1 FRI (0.41, 0.5 , 0.51)
2 Unres. (0.51, 0.36 , 0.62 )
3 FRII (0.34 , 0.59 , 0.57 )
4 FRII (0.16 , 0.72 , 0.7 )

In a first attempt to use the default CapsNet model (containing
58M free parameters), we observed a clear overfitting, owing to the
large number of free parameters compared to the number of training
images. Despite this, the model still achieved very similar results to
the models using many fewer parameters quoted in this work.

Table 10 shows the labels and prediction vector for some sources
that the Capsule network could not reliably classify , as probabilities
higher than 0.5 across two classes were attained.

5.2 LOFAR original and augmented images

We augmented the images with translation, rotation, and flipping
as outlined in Section 3.2, keeping the distribution of FRI and FRII
sources the same as in the original data set. Table 1 gives the number
of original and augmented images. There are again 79 per cent and
21 per cent of the original samples used in training and testing,
respectively.

5.2.1 ConvNet-4 and ConvNet-8

We applied both ConvNet-4 and ConvNet-8 models to the original
and augmented data set, with the results shown in Tables 5 and 6.
The overall metrics are significantly better (Avg. Recall = 93.4 and
94.3) than was observed when the same model was used on the
original images (Avg. Recall = 88.7 and 91.2 for ConvNet-4 and
ConvNet-8, respectively), therefore both models benefit from data
augmentation. The confidence intervals are also usually reduced.
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Table 11. Confusion matrix for a single run with the
ConvNet-4 architecture, after training on the original and
augmented images. The predictions are along the columns
and the labels are along the rows.

Unres. FRI FRII Total

Unres. 294 6 1 301
FRI 3 202 14 219
FRII 5 12 63 80

Total 302 220 78 600

Table 12. Confusion matrix for a single run with the default
CapsNet architecture, after training on the original and aug-
mented images. The predictions are along the columns and the
labels are along the rows.

Unres. FRI FRII Total

Unres. 289 12 0 301
FRI 4 198 17 219
FRII 6 24 50 80

Total 299 234 67 600

Although the classification metrics remain the poorest for the
FRII class, they improved the most when using the augmented data,
despite the fact that there were more examples of FRIs.

A confusion matrix is provided in Table 11 for the ConvNet-4
model, to see the numbers of samples that are both correctly and
incorrectly predicted.

5.2.2 CapsNet

The best-performing capsule network (the default model) was used
to see whether an improvement in overall metrics could be obtained
when using augmented images in addition to the original images.
The results are shown in Table 7. The confusion matrix for a single
run with the default CapsNet architecture, after training on the
original and augmented images, is given in Table 12.

The classification metrics are significantly improved when using
the augmented images (Avg. Recall = 89.3 with augmentation,
compared to Avg. Recall = 84.2 ± 0.2 without), therefore the
capsule network also benefits from training on additional images.
Despite the fact that capsule networks output a vector describing
the properties of images across the classes and aim to extract the
underlying patterns, they still benefit from the use of additional
augmented images, for the FITS file data set. The noise in the
images could be preventing the network from seeing the underlying
morphology in the signal, and there is an insufficient number of
images available across the classes, hence improved results are
observed when more examples are provided. Despite CapsNet
benefitting from augmentation, the classification metrics are still
significantly lower compared to when augmentation is applied to
the two ConvNets.

Fig. 9 shows the real and reconstructed images for a single
run of the default CapsNet model when training on the original
and augmented images. The labels match the predictions with the
exception of the third and fourth images in the top two rows,
where the true labels are FRIIs but the predictions are FRIs.
The reconstructions of the images are innaccurate, giving the
appearance that CapsNet is determining class membership based
on the blurriness of the reconstructed spheres. The images in the

Figure 9. The real and reconstructed images using the default capsule
network set-up when training on the original and augmented images,
annotated with the corresponding labels. The top row shows the real images,
the second row shows the corresponding reconstructions. The third row
shows the real images and the final row shows the reconstructions. The
decoder always detects that there is an object in the centre of the image,
however it is unable to reconstruct the object accurately. Based on the
reconstruction, we see that CapsNet is determining class membership based
on the characteristics of the sphere in the centre.

‘Unresolved’ class are represented as concentrated spheres, FRIs are
less concentrated, blurrier spheres, and FRIIs are the most diffuse.
The inaccuracy of the reconstructions is most likely due to the fact
that CapsNet appears to have trouble distinguishing signal from
noise. Despite this, the average metrics are still above 89 per cent
when training on the original and augmented images, as it does not
appear to be necessary to have accurate reconstructions to determine
class membership. Overall, the FRII source predictions appear to
be the most affected by the noise level and/or potential unassociated
emission in the images; since the reconstructions tend to be blurrier
spheres with only one component, they become confused with FRIs
and FRIIs, as FRIIs can have either both lobes being connected, as
well as disconnected.

Figure 10 shows four examples of radio galaxies in which the
probabilites are greater than 0.5 across two classes that the CapsNet
could therefore not reliably classify. There are a total of 55 out of 600
(9.2 per cent) such cases. Table 10 shows the CapsNet probability
vector across the four examples. In Source 1, CapsNet gives similar
probabilities between the FRI and FRII classes, which could be
because the source is quite faint, therefore it is having trouble
extracting the morphology. Source 2 is predicted more confidently
as an FRII compared to an Unresolved source, perhaps because it
appears as though it has two lobes close together. Sources 3 and 4
are labelled as an FRII, however the CapsNet predicts them more
confidently as an FRI compared to an FRII, as it may not detect the
lobes.

Similar to what was observed in the ConvNet architectures,
the metrics across the FRII class are the poorest. However, after
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Figure 10 Examples of radio galaxies having probabilitieis greater than 0.5
in more than two classes in the default CapsNet architecture that are also
incorrectly predicted. The labels and predictions from left to right, top to
bottom are [FRI,Unres.,FRII,FRII] and [FRII,FRII,FRI,FRI], respectively.
These sources are labelled as (1, 2, 3, 4) in Table 10.

training with the original and augmented images, the FRII metrics
improved the most. The FRII class has the fewest examples of
images compared to the other two classes.

Despite the use of image augmentation, it is likely that the number
of original training samples available is insufficient to train a capsule
network.

5.3 Sigma-clipped images

In order to test whether the CapsNet performance could be improved
by removing noise and the occasionally unassociated emission, we
used the sigma-clipped images that mask out pixels below 4rms. A
flood-filling algorithm and masking techniques have additionally
been applied to the data set to identify and connect associated
emission (Mingo et al. in preparation). We analyse the results
obtained from using the original sigma-clipped images, as well
as both the original and augmented images.

The performance of both ConvNets is significantly improved as
shown in Tables 5 and 6 (Avg. Recall = 91.9 per cent compared to
88.7 per cent for ConvNet-4, 94.9 per cent compared to 91.2 per cent
for ConvNet-8) when using the original sigma-clipped images,
compared to using the original FITS files that includes noise and
potential unassociated sources. The use of the original sigma-
clipped images is significantly worse compared to using the original
and augmented FITS images for the ConvNet-4 model (Avg. Recall
= 91.9 per cent compared to 93.4 per cent), and is not significantly
better for the ConvNet-8 model. The inclusion of augmented images
on the sigma-clipped data set appears to benefit the ConvNet-4
model more compared to the ConvNet-8 model.

The performance of CapsNet is significantly improved as shown
in Table 7 when using the sigma-clipped original images (Avg.
Recall = 91.5 per cent compared to 84.7 per cent with the original

Figure 11. Examples of incorrectly classified radio galaxies from the 4rms
sigma-clipped data set using the ConvNet-8 layer architecture. The labels
and predictions from left to right, top to bottom are [Unres.,FRII,FRII,FRI]
and [FRI,FRI,FRI,FRII], respectively. The top left image appears to have too
few pixels to be reliably classified, thus belonging to the ‘unresolved’ class,
however the remaining three may have been misclassified by the automated
algorithm.

FITS images, and compared to 89.9 per cent with the original
and augmented FITS images). However, CapsNet still performs
worse compared to both ConvNet-4 and ConvNet-8. The use
of image augmentation on the sigma-clipped images appears to
improve the performance (Avg. Recall = 93.6 per cent compared
to 91.5 per cent). The confidence intervals are also generally
smaller compared to when the FITS images are used, therefore the
performance is slightly more stable.

The use of the sigma-clipped and masked arrays is also sig-
nificantly better than using the FITS images, when comparing the
performance within the original, and the original and augmented
data sets, across both ConvNet models and CapsNet models.
Therefore, none of the deep learning models can be trained to be
completely robust to noise and potentially unassociated emission.

In considering the results of one particular run with the ConvNet-
8 model, out of 600 test samples, there are 20 where the predictions
do not match the labels. Fig. 11 shows four such examples of images
from the 4rms sigma-clipped data set. Upon inspection of all the
incorrectly predicted radio galaxies using the ConvNet-8 model, all
12 images that have been labelled as an FRII are predicted to be an
FRI. Out of three images labelled as ‘Unresolved’, two are predicted
to be an FRI and one is predicted to be an FRII. The remaining
five images labelled as FRI are predicted to be FRIIs. The wrongly
classified galaxies mostly appear to have an ambiguous morphology
and therefore it could be argued that they are misclassified by the
automated algorithm used to label them [see Section 2.2 and Mingo
et al. (in preparation)]. For example, the top right and bottom left
panels in Fig. 11 do not appear to be a representative examples of an
FRII, and the bottom right panel appears more as an FRII, whereas
it is labelled as an FRI.
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Table 13. The average metrics (in percentages) across each of the classes
in the (2) original and augmented LOFAR data set using a 5 convolutional
layer model with no intermediate dense layers. Five runs were done in total,
using 600 samples in the test set.

Class Precision Recall F1 score Accuracy

(2)
Unres. 97.7 ± 0.6 96.9 ± 0.9 97.3 ± 0.3 97.2 ± 0.3
FRI 88.4 ± 1.7 92.8 ± 1.9 90.5 ± 0.1 92.8 ± 0.1
FRII 77.8 ± 2.9 69.0 ± 2.5 73.0 ± 1.3 93.1 ± 0.4

Avg. 91.6 ± 0.2 91.7 ± 0.1 91.6 ± 0.1 95.0 ± 0.1

We note that the larger the proportion of sources that are
misclassified by the automated algorithm, the more difficult it will
be for the models to learn.

5.4 Additional results

This section summarizes other convolutional and capsule network
architectures as well as parameters that were tried. These include
transfer learning, the application of early stopping, and comparison
of results with similar work.

5.4.1 ConvNet models

We also wanted to test the performance of a simple purely convo-
lutional architecture using five layers (with no intermediate dense
layer following the convolutions). The purpose of these dense layers
is to help model complex global patterns in the data. The metrics
were significantly lower compared to those of both ConvNet models,
as shown in Table 13. Therefore, at least one intermediate dense
layer could be necessary for optimal performance in convolutional
networks. We also tested an architecture using four convolutional
with no pooling layers, and found the results to be inferior compared
to using the ConvNet-4 model. Therefore, the use of pooling appears
to be advantageous in the current data set, perhaps because it allows
more degrees of freedom for the morphology within classes.

5.4.2 CapsNet models

Other variations on capsule network models included stacking two
convolutional layers instead of one, using 90 per cent training data
and 10 per cent testing data, using an ensemble of capsule network
models, increasing the number of routing iterations, decreasing the
filter size, changing the batch size, adjusting the learning rate, using
different activation functions, applying dropout, pooling and using a
combination of increased filter sizes together with a more complex
decoder, all which resulted in similar or worsened performance
metrics. The only possible improvement could be the use of a larger
sample of original training images.

5.4.3 Transfer learning

Transfer learning (Pratt, Mostow & Kamm 1991) involves applying
the knowledge from one trained neural network to help another learn
a related task. In the deep learning context, weights are typically
pre-loaded from a network trained on a large data set with many
classes to another unseen data set.

We used the Inception ResNet model v2 (Szegedy, Ioffe &
Vanhoucke 2016), which combines Inception and Residual network

Table 14. The average metrics (in percentages) across each of the classes
in the (2) original and augmented LOFAR data set, for the transfer learning
model. Five runs were done in total, using 600 samples in the test set.

Class Precision Recall F1 score Accuracy

(2)
Unres. 98.7 ± 0.2 98.3 ± 0.4 98.5 ± 0.2 98.4 ± 0.2
FRI 91.8 ± 0.5 95.0 ± 0.4 93.4 ± 0.2 95.0 ± 0.2
FRII 85.4 ± 1.2 78.7 ± 2.7 81.9 ± 1.2 95.3 ± 0.2

Avg. 94.4 ± 0.2 94.5 ± 0.2 94.4 ± 0.2 96.8 ± 0.1

architectures. An inception network consists of a convolutional
network using filters of various sizes and pooling within the same
layer, and a residual network utilizes skip connections between
convolutional layers if the classification accuracy becomes saturated
with the subsequent stacking of layers. The Inception ResNet model
is trained on the ImageNet data set (Deng et al. 2009), to classify
over 14M images into 1000 categories. Although the nature of
the ImageNet data set is different to the radio galaxy images, pre-
loading weights from a network trained with such a data set is better
than initializing the weights from a random distribution.

To use the pre-trained ResNet model in Keras requires images of
size of at least 139 × 139 pixels. As such we padded our images
with zeros for 20 pixels along the horizontal and vertical directions,
resulting in images of 140 × 140 pixels.

The pre-trained ResNet model is applied to the LOFAR original
and augmented FITS images, to verify whether the classification
metrics could be improved from those of our other models. The
results in Table 14 show that the classification metrics are not
significantly better (Avg. Recall = 94.5 per cent) compared to when
training on the same set of images from randomly initialized weights
with the ConvNet-8 architecture (Avg. Recall = 94.3 per cent). The
metrics are significantly better than for the ConvNet-4 architecture
(Avg. Recall = 93.4 per cent). Optimal results are still obtained
when using the sigma-clipped data set, where noise and potentially
unassociated sources are removed.

We note that the results obtained with transfer learning may
be improved if there is a neural network trained on a similar
astronomical classification task from which pre-trained weights
can be loaded. A successful implementation of transfer learning in
classifying optical galaxy morphology is in Dominguez Sanchez
et al. (2019), and most recently in radio galaxy morphology
classification (Tang, Scaife & Leahy 2019).

The pre-trained network converges faster; ConvNet-4 required
40 epochs of training to reach the optimal validation accuracy as
opposed to 30 epochs for the transfer learning model, when averaged
over five runs.

5.4.4 Early stopping

We also experimented with applying early stopping in the training
of both the Capsnet and ConvNet models. The implementation
was such that if the validation accuracy did not improve for 10
subsequent epochs, training was stopped and the metrics on the
test set were calculated. However, we found the performance to
be the same for the ConvNet model, and worse for the CapsNet
model, compared to when training for a pre-defined number of 50
epochs (results not shown). In a work focused on the usage of early
stopping, Prechelt (2012) used a mix of more than 1000 training
runs across 12 different problems and 24 different architectures
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and concluded that slower stopping criteria allow for ≈4 per cent
average improvement in generalization, at a cost of around a factor
of four longer in training time.

5.4.5 Recent similar work

Recently, Katebi et al. (2018) applied a capsule network to classify
optical galaxies based on morphology, using the classes of spiral,
elliptical, and star/artefact. They find that their capsule network
classification accuracy surpasses that of their baseline convolutional
network (98.77 per cent versus 96.96 per cent, respectively). The
capsule network architecture has over 124M parameters, for a total
of 61 578 images. In contrast, our best-performing capsule network
uses just over 4M parameters with up to 15 936 images using the
original and augmented data set.

We note that the difference in morphology between their classes
is starker than in our case. Additionally, the optical images show a
much better contrast between object and background, where noise
is less prominent. The optical galaxy classifications were crowd-
sourced, whereas our labels originated from an automated algorithm
which comes with some limitations, as outlined in Section 2.2. The
radio emission also produces sparser images compared to the optical
galaxy images.

It is difficult to compare their work to ours as the number of im-
ages in each of their three classes is unknown. Hence, it is uncertain
whether the classification accuracy is the best discriminator to use
between the models (Hossin & Sulaiman 2015). Other classification
metrics are not provided, such as precision and recall, which may be
more powerful in discriminating models. There is also no indication
of variability between runs, as well as the degree of overfitting in
the networks during training.

6 C O N C L U S I O N S

This paper explored two deep learning approaches in the clas-
sification of radio data from the LoTSS HETDEX field across
three classes of radio galaxies: Unresolved sources, FRI, and FRII
galaxies. The labels were generated using an automated algorithm,
which used a catalogue of sources from the LoTSS DR1 source
catalogue with optical IDs and associations (Williams et al. 2019).
The radio galaxies belonging to the FRI and FRII classes were
additionally cross-checked to eliminate galaxies in which the radio
emission is likely to be dominated by star formation (Hardcastle
et al. 2019). Despite the classifications being generated using
masked images that remove potentially unassociated sources and
emission below 4rms from the images, one of our aims was to test
how robust our deep learning algorithms could be when such effects
were present.

We tested the performance of a four- and eight-layer convolu-
tional neural network (ConvNet-4 and ConvNet-8) against various
architectures of capsule networks (CapsNet), using the precision,
recall, F1 score, and accuracy, to evaluate the performance of the
models. PYTHON code implementing v1.0 of the algorithms can be
obtained from github.8 Automated classifications of LoTSS sources
obtained with the algorithms will be presented in a future paper
(Mingo et al., in preparation).

The first CapsNet model explored was the default model, a
simplified architecture of the original model designed for the

8https://github.com/vlukic973/RadioGalaxy Conv Caps.

MNIST data set, the second used larger filter sizes in the first
convolutional layer and Primary capsule layer, and a larger stride
in the convolutional layer. The third model used a more complex
decoder and a higher loss for the decoder weight. The second and
third models were designed to better account for the increased
complexity of the data. Four different sets of data were used to
train and test the two ConvNets and the variations on CapsNet
architectures: (i) using the original FITS images only, (ii) original
and augmented FITS images, (iii) the original masked arrays that
remove emission below 4rms and potential unassociated sources,
and (iv) original and augmented masked 4rms arrays.

We found that the optimal CapsNet performance was obtained
when using the default model, in terms of the overall classification
metrics.

The results showed that the ConvNet architectures always
exceeded the performance of the chosen CapsNet model, and
ConvNet-8 always performed better compared to ConvNet-4, most
likely because the ConvNet-8 model has twice the number of
convolutional layers and parameters as ConvNet-4, therefore it is
able to extract higher dimensional features that are particular to
each class.

The use of transfer learning on the original and augmented images
achieved the same results as ConvNet-8. The performance of all
deep learning models was optimized when using the 4rms sigma-
clipped numpy array, which is expected as the noise and potential
unassociated emission is removed. Some observations of differences
in results between using ConvNet and CapsNet architectures and
the likely reasons are as follows:

(i) As CapsNet tends to capture and preserve the relative location
of features in the images, it is not as successful in distinguishing
signal from noise, or dealing with the presence of potentially
unassociated emission, as the ConvNet architectures.

(ii) The use of pooling in the ConvNet architectures generally
appears to be advantageous in two respects: (a) increased likelihood
that noise and potential unassociated sources will be filtered out,
(b) allowing more degrees of freedom for variability in morphology
within the classes, when the undesirable effects have been removed
through use of the 4rms data set.

(iii) The removal of noise and potentially unassociated emission
through the use of sigma-clipped and masked arrays improves the
performance of both deep learning approaches, when considering
the metrics within the original, and original and augmented data
sets.

(iv) The use of image augmentation appears to benefit both
ConvNets and CapsNet, when using the FITS files, which contain
the original radio emission.

The LoTSS survey is the first wide-area survey to contain such
faint sources. It is sensitive to a larger range of source evolutionary
states, and can also see structure on a wider range of spatial scales
due to the combination of well-sampled UV coverage and long
baselines. These features result in images having richer, more
varied, and sometimes ambiguous morphologies that are more
difficult to categorize into distinct classes.

Across both deep learning algorithms, the ‘Unresolved’ class
is recovered most successfully, followed by the FRI class. The
FRIIs tend to be the least well recovered. Although FRIs display
morphological diversity as they can be straight or bent, FRIIs
have two peaks of varying distances that may or may not be
connected by extended emission with the host galaxy. Therefore,
FRIs are more likely to contain a single connected component
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whereas FRII can contain either a single or two connected com-
ponents. There are also fewer examples of FRIIs in the data
set compared to FRIs. When we inspected some incorrectly
predicted galaxies using the sigma-clipped data set, we found
the morphologies to be ambiguous in most cases, as shown in
Fig. 11.

Traditional convolutional neural networks generally contain
pooling layers in their architecture in order to reduce the number
of parameters. However, this can cause the relative locations of
features within the image to degrade, which capsule networks
are designed to preserve. Our results indicate that for the radio
galaxy data in this work, the performance of capsule networks is
inferior to that of convolutional neural networks. This could be due
to the number of original samples being insufficient to train the
capsule network. Another reason may be that since they attempt
to preserve the relative location of features, capsule networks
appear to interpret noise as signal and introduce extra distortion
into the image, as shown in Fig. 5. This aspect has proven to
be most detrimental in the recovery of FRII sources, as they are
more susceptible to the mingling of signal with noise due to the
fact that they are comprised of either one or two components.
Additionally, the FRII class contains the fewest examples of
images.

In comparison with previous works that use convolutional neural
networks to classify radio galaxy morphologies (Aniyan & Thorat
2017; Alhassan et al. 2018; Lukic et al. 2018; Wu et al. 2018), this
work explored the use of capsule networks, which are designed to
preserve the hierarchical feature information in an image, and finds
their performance to be inferior to that of standard convolutional
network architectures. The data from the LOFAR LoTSS survey
reveals fainter and more detailed emission compared to the data
from the surveys which the previous works analysed, providing
additional challenges for classification. As such, our findings hold
for surveys having a comparable set-up, provided they produce
images with similar morphologies and noise profiles.

Based on the current results obtained, it appears that convolu-
tional neural networks still hold as the deep learning technique
that should be used for future surveys. They are also faster to train
as they use fewer parameters. Capsule networks, in their present
form, are generally slower and require further development to be
made more robust to noisy real data, however the current perfor-
mance may be improved by explicitly training them on cleaned
data with various examples of morphologies present within each
class.

There are several limitations that would need to be overcome to
apply these methods to large samples, such as the need for ancillary
data to separate star-forming galaxies. The exclusion cannot be
performed based purely on the radio galaxy morphology. The
classes should also be extended to encompass the hybrid sources,
as well as other rare sources such as bent-tailed and double–double
sources.
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