682 research outputs found

    Elastocapillary Levelling of Thin Viscous Films on Soft Substrates

    Get PDF
    A thin liquid film with non-zero curvature at its free surface spontaneously flows to reach a flat configuration, a process driven by Laplace pressure gradients and resisted by the liquid's viscosity. Inspired by recent progresses on the dynamics of liquid droplets on soft substrates, we here study the relaxation of a viscous film supported by an elastic foundation. Experiments involve thin polymer films on elastomeric substrates, where the dynamics of the liquid-air interface is monitored using atomic force microscopy. A theoretical model that describes the coupled evolution of the solid-liquid and the liquid-air interfaces is also provided. In this soft-levelling configuration, Laplace pressure gradients not only drive the flow, but they also induce elastic deformations on the substrate that affect the flow and the shape of the liquid-air interface itself. This process represents an original example of elastocapillarity that is not mediated by the presence of a contact line. We discuss the impact of the elastic contribution on the levelling dynamics and show the departure from the classical self-similarities and power laws observed for capillary levelling on rigid substrates

    ISOPHOT 95 micron observations in the Lockman Hole - The catalogue and an assessment of the source counts

    Full text link
    We report results from a new analysis of a deep 95 micron imaging survey with ISOPHOT on board the Infrared Space Observatory, over a ~1 square degree area within the Lockman Hole, which extends the statistics of our previous study (Rodighiero et al. 2003). Within the survey area we detect sixty-four sources with S/N>3 (roughly corresponding to a flux limit of 16 mJy). Extensive simulations indicate that the sample is almost complete at fluxes > 100 mJy, while the incompleteness can be quantified down to ~30 mJy. The 95 micron galaxy counts reveal a steep slope below 100 mJy (alpha~1.6), in excess of that expected for a non-evolving source population. In agreement with counts data from ISO at 15 and 175 micron, this favours a model where the IR populations evolve both in number and luminosity densities. We finally comment on some differences found with other ISO results in this area.Comment: 4 pages, accepted by Astronomy and Astrophysics Lette

    Traveling wave packets of total electron content disturbances as deduced from global GPS network data

    Full text link
    We identified a new class of mid-latitude medium-scale traveling ionospheric disturbances (MS TIDs), viz. traveling wave packets (TWPs) of total electron content (TEC) disturbances. For the first time, the morphology of TWPs is presented for 105 days. Using the technique of GPS interferometry of TIDs we carried out a detailed analysis of the spatial-temporal properties of TWPs by considering an example of the most conspicuous manifestation of TWPs on October 18, 2001 over California, USA. The velocity and direction of TWPs correspond to those of mid-latitude MS TIDs obtained previously from analyzing the phase characteristics of HF radio signals as well as signals from geostationary satellites and discrete cosmic radio sources.Comment: LaTeX2.09, 28 pages, 9 figure

    Star-galaxy separation in the AKARI NEP Deep Field

    Get PDF
    Context: It is crucial to develop a method for classifying objects detected in deep surveys at infrared wavelengths. We specifically need a method to separate galaxies from stars using only the infrared information to study the properties of galaxies, e.g., to estimate the angular correlation function, without introducing any additional bias. Aims. We aim to separate stars and galaxies in the data from the AKARI North Ecliptic Pole (NEP) Deep survey collected in nine AKARI / IRC bands from 2 to 24 {\mu}m that cover the near- and mid-infrared wavelengths (hereafter NIR and MIR). We plan to estimate the correlation function for NIR and MIR galaxies from a sample selected according to our criteria in future research. Methods: We used support vector machines (SVM) to study the distribution of stars and galaxies in the AKARIs multicolor space. We defined the training samples of these objects by calculating their infrared stellarity parameter (sgc). We created the most efficient classifier and then tested it on the whole sample. We confirmed the developed separation with auxiliary optical data obtained by the Subaru telescope and by creating Euclidean normalized number count plots. Results: We obtain a 90% accuracy in pinpointing galaxies and 98% accuracy for stars in infrared multicolor space with the infrared SVM classifier. The source counts and comparison with the optical data (with a consistency of 65% for selecting stars and 96% for galaxies) confirm that our star/galaxy separation methods are reliable. Conclusions: The infrared classifier derived with the SVM method based on infrared sgc- selected training samples proves to be very efficient and accurate in selecting stars and galaxies in deep surveys at infrared wavelengths carried out without any previous target object selection.Comment: 8 pages, 8 figure

    A 12um ISOCAM Survey of the ESO-Sculptor Field: Data Reduction and Analysis

    Full text link
    We present a detailed reduction of a mid-infrared 12um (LW10 filter) ISOCAM open time observation performed on the ESO-Sculptor Survey field (Arnouts et al. 1997). A complete catalogue of 142 sources (120 galaxies and 22 stars), detected with high significance (equivalent to 5sigma), is presented above an integrated flux density of 0.24mJy. Star/galaxy separation is performed by a detailed study of colour-colour diagrams. The catalogue is complete to 1mJy and below this flux density the incompleteness is corrected using two independent methods. The first method uses stars and the second uses optical counterparts of the ISOCAM galaxies; these methods yield consistent results. We also apply an empirical flux density calibration using stars in the field. For each star, the 12um flux density is derived by fitting optical colours from a multi-band chi^2 to stellar templates (BaSel-2.0) and using empirical optical-IR colour-colour relations. This article is a companion analysis to Rocca-Volmerange 2007 et al. where the 12um faint galaxy counts are presented and analysed by galaxy type with the evolutionary code PEGASE.3.Comment: 12 pages, 7 figures, figure 1 modified from journal version for size, accepted for publication in A&A, includes psfig.st

    The star-formation history of the universe - an infrared perspective

    Get PDF
    A simple and versatile parameterized approach to the star formation history allows a quantitative investigation of the constraints from far infrared and submillimetre counts and background intensity measurements. The models include four spectral components: infrared cirrus (emission from interstellar dust), an M82-like starburst, an Arp220-like starburst and an AGN dust torus. The 60 ÎŒ\mum luminosity function is determined for each chosen rate of evolution using the PSCz redshift data for 15000 galaxies. The proportions of each spectral type as a function of 60 ÎŒ\mum luminosity are chosen for consistency with IRAS and SCUBA colour-luminosity relations, and with the fraction of AGN as a function of luminosity found in 12 ÎŒ\mum samples. The luminosity function for each component at any wavelength can then be calculated from the assumed spectral energy distributions. With assumptions about the optical seds corresponding to each component and, for the AGN component, the optical and near infrared counts can be accurately modelled. A good fit to the observed counts at 0.44, 2.2, 15, 60, 90, 175 and 850 ÎŒ\mum can be found with pure luminosity evolution in all 3 cosmological models investigated: Ωo\Omega_o = 1, Ωo\Omega_o = 0.3 (Λ\Lambda = 0), and Ωo\Omega_o = 0.3, Λ\Lambda = 0.7. All 3 models also give an acceptable fit to the integrated background spectrum. Selected predictions of the models, for example redshift distributions for each component at selected wavelengths and fluxes, are shown. The total mass-density of stars generated is consistent with that observed, in all 3 cosmological models.Comment: 20 pages, 25 figures. Accepted for publication in ApJ. Full details of models can be found at http://astro.ic.ac.uk/~mrr/countmodel

    An Overdensity of Extremely Red Objects Around Faint Mid-IR galaxies

    Full text link
    We have searched for Extremely Red Objects (EROs) around faint mid-IR selected galaxies in ELAIS fields. We find a significant overdensity, by factors of 2 to 5, of these EROs compared to field EROs in the same region and literature random field ERO counts. The excess is similar to that found previously in the fields of known high redshift quasars and AGN. While with the present data it cannot be definitely shown whether the overdensity is physically connected to the mid-IR source, a derived radial distribution does suggest this. The fraction of EROs among K-selected galaxies is high in the mid-IR fields in agreement with the picture that the EROs responsible for the overdensity are members of high redshift clusters of galaxies. We find R-K>5 selected EROs to be more clustered around the mid-IR galaxies than I-K>4 EROs, though statistics are weak because of small numbers. However, this would be consistent with a cluster/galaxy group scenario if, as we argue, the former colour selection finds preferentially more strongly clustered early type galaxies, whereas the latter selection includes a larger fraction of dusty EROs. Finally, using the mid-IR data, we are able to limit the fraction of ULIRG type very dusty EROs at K<18 magnitude to less than 10% of the total ERO population.Comment: A&A, accepted, 13 pages and 5 ps-fig

    Spitzer and ISO Galaxy Counts in the Mid-Infrared

    Full text link
    Galaxy source counts that simultaneously fit the deep mid-infrared surveys at 24 microns and 15 microns made by the Spitzer Space Telescope and the Infrared Space Observatory (ISO) respectively are presented for two phenomenological models. The models are based on starburst and luminous infrared galaxy dominated populations. Both models produce excellent fits to the counts in both wavebands and provide an explanation for the high redshift population seen in the longer Spitzer 24 micron band supporting the hypothesis that they are luminous-ultraluminous infrared galaxies at z=2-3, being the mid-infrared counterparts to the sub-mm galaxy population. The source counts are characterized by strong evolution to redshift unity, followed by less drastic evolution to higher redshift. The number-redshift distributions in both wavebands are well explained by the effect of the many mid-infrared features passing through the observation windows. The sharp upturn at around a milliJansky in the 15 micron counts in particular depends critically on the distribution of mid-infrared features around 12 microns, in the assumed spectral energy distribution.Comment: 6 pages, 2 figures, accepted for publication MNRA

    A 610-MHz survey of the ELAIS-N1 field with the Giant Metrewave Radio Telescope - Observations, data analysis and source catalogue

    Full text link
    Observations of the ELAIS-N1 field taken at 610 MHz with the Giant Metrewave Radio Telescope are presented. Nineteen pointings were observed, covering a total area of 9 square degrees with a resolution of 6" x 5", PA +45 deg. Four of the pointings were deep observations with an rms of 40 microJy before primary beam correction, with the remaining fifteen pointings having an rms of 70 microJy. The techniques used for data reduction and production of a mosaicked image of the region are described, and the final mosaic is presented, along with a catalogue of 2500 sources detected above 6 sigma. This work complements the large amount of optical and infrared data already available on the region. We calculate 610-MHz source counts down to 270 microJy, and find further evidence for the turnover in differential number counts below 1 mJy, previously seen at both 610 MHz and 1.4 GHz.Comment: 12 pages, 18 figures, two tables. Table 1 can be found in full via http://www.mrao.cam.ac.uk/surveys/ . Accepted for publication in MNRA

    Number Counts of Bright Extremely Red Objects: Evolved Massive Galaxies at z~1

    Full text link
    We present results on number counts of Extremely Red Objects (EROs) in a 2850 arcmin^2 near-infrared survey performed in European Large Area ISO Survey (ELAIS) fields at K<17.5. Counts of EROs are extended to brighter levels than available previously, giving 0.002 +/- 0.001 arcmin^-2 at K<16.5 and consistent numbers with literature values at fainter magnitudes. Photometric redshifts from HYPERZ as well as GRASIL model SEDs of galaxies imply that our EROs are located in the range z=0.7-1.5, with the bulk of the population at z~1. Taking advantage of the ISO data in the fields, we use mid-IR detections to constrain the number of dusty EROs, and also discuss the superior capabilities of Spitzer Space Telescope to detect dusty EROs. Both the mid-IR data and the use of colour-colour diagrammes indicate that at most 10-20% of the EROs in this bright regime are dusty starbursting systems. The space density of our EROs, interpreted to be counterparts of local >2-3L^star massive galaxies at around z~1, is estimated to be approx. 2x10^-5 Mpc^-3, which is consistent with local values. Furthermore, the cumulative number counts at our bright magnitudes are remarkably well fitted by pure luminosity evolution models.Comment: A&A, accepted, 14 pages and 8 ps-fig
    • 

    corecore