37 research outputs found

    Atmospheric washout of radioactive aerosol for different types of precipitation events

    Get PDF

    Atmospheric washout of radioactive aerosol for different types of precipitation events

    Get PDF

    Exploring planets and asteroids with 6DoF sensors: Utopia and realism

    Get PDF
    A 6 degrees-of-freedom (6DoF) sensor, measuring three components of translational acceleration and three components of rotation rate, provides the full history of motion it is exposed to. In Earth sciences 6DoF sensors have shown great potential in exploring the interior of our planet and its seismic sources. In space sciences, apart from navigation, 6DoF sensors are, up to now, only rarely used to answer scientific questions. As a first step of establishing 6DoF motion sensing deeper into space sciences, this article describes novel scientific approaches based on 6DoF motion sensing with substantial potential for constraining the interior structure of planetary objects and asteroids. Therefore we estimate 6DoF-signal levels that originate from lander–surface interactions during landing and touchdown, from a body’s rotational dynamics as well as from seismic ground motions. We discuss these signals for an exemplary set of target bodies including Dimorphos, Phobos, Europa, the Earth’s Moon and Mars and compare those to self-noise levels of state-of-the-art sensors

    Scientific Opinion on Exploring options for providing advice about possible human health risks based on the concept of Threshold of Toxicological Concern (TTC)

    Get PDF
    <p>Synthetic and naturally occurring substances present in food and feed, together with their possible breakdown or reaction products, represent a large number of substances, many of which require risk assessment. EFSA’s Scientific Committee was requested to evaluate the threshold of toxicological concern (TTC) approach as a tool for providing scientific advice about possible human health risks from low level exposures, its applicability to EFSA’s work, and to advise on any additional data that might be needed to strengthen the underlying basis of the TTC approach. The Scientific Committee examined the published literature on the TTC approach, undertook its own analyses and commissioned an <em>in silico </em>investigation of the databases underpinning the TTC approach. The Scientific Committee concluded that the TTC approach can be recommended as a useful screening tool either for priority setting or for deciding whether exposure to a substance is so low that the probability of adverse health effects is low and that no further data are necessary. The following human exposure threshold values are sufficiently conservative to be used in EFSA’s work; 0.15 ÎŒg/person per day for substances with a structural alert for genotoxicity, 18 ÎŒg/person per day for organophosphate and carbamate substances with anti-cholinesterase activity, 90 ÎŒg/person per day for Cramer Class III and Cramer Class II substances, and 1800 ÎŒg/person per day for Cramer Class I substances, but for application to all groups in the population, these values should be expressed in terms of body weight, i.e. 0.0025, 0.3, 1.5 and 30 ÎŒg/kg body weight per day, respectively. Use of the TTC approach for infants under the age of 6 months, with immature metabolic and excretory systems, should be considered on a case-by-case basis. The Committee defined a number of exclusion categories of substances for which the TTC approach would not be used.</p&gt

    The Crowdsourced Replication Initiative: Investigating Immigration and Social Policy Preferences. Executive Report.

    Get PDF
    In an era of mass migration, social scientists, populist parties and social movements raise concerns over the future of immigration-destination societies. What impacts does this have on policy and social solidarity? Comparative cross-national research, relying mostly on secondary data, has findings in different directions. There is a threat of selective model reporting and lack of replicability. The heterogeneity of countries obscures attempts to clearly define data-generating models. P-hacking and HARKing lurk among standard research practices in this area.This project employs crowdsourcing to address these issues. It draws on replication, deliberation, meta-analysis and harnessing the power of many minds at once. The Crowdsourced Replication Initiative carries two main goals, (a) to better investigate the linkage between immigration and social policy preferences across countries, and (b) to develop crowdsourcing as a social science method. The Executive Report provides short reviews of the area of social policy preferences and immigration, and the methods and impetus behind crowdsourcing plus a description of the entire project. Three main areas of findings will appear in three papers, that are registered as PAPs or in process

    Rotation, Strain, and Translation Sensors Performance Tests with Active Seismic Sources

    No full text
    Interest in measuring displacement gradients, such as rotation and strain, is growing in many areas of geophysical research. This results in an urgent demand for reliable and field-deployable instruments measuring these quantities. In order to further establish a high-quality standard for rotation and strain measurements in seismology, we organized a comparative sensor test experiment that took place in November 2019 at the Geophysical Observatory of the Ludwig-Maximilians University Munich in Fürstenfeldbruck, Germany. More than 24 different sensors, including three-component and single-component broadband rotational seismometers, six-component strong-motion sensors and Rotaphone systems, as well as the large ring laser gyroscopes ROMY and a Distributed Acoustic Sensing system, were involved in addition to 14 classical broadband seismometers and a 160 channel, 4.5 Hz geophone chain. The experiment consisted of two parts: during the first part, the sensors were co-located in a huddle test recording self-noise and signals from small, nearby explosions. In a second part, the sensors were distributed into the field in various array configurations recording seismic signals that were generated by small amounts of explosive and a Vibroseis truck. This paper presents details on the experimental setup and a first sensor performance comparison focusing on sensor self-noise, signal-to-noise ratios, and waveform similarities for the rotation rate sensors. Most of the sensors show a high level of coherency and waveform similarity within a narrow frequency range between 10 Hz and 20 Hz for recordings from a nearby explosion signal. Sensor as well as experiment design are critically accessed revealing the great need for reliable reference sensors

    Same but Different? Comparing the Epidemiology, Treatments and Outcomes of COVID-19 and Non-COVID-19 ARDS Cases in Germany Using a Sample of Claims Data from 2021 and 2019

    No full text
    Background: Acute respiratory distress syndrome (ARDS) is a severe lung condition that can be caused by a variety of underlying illnesses. Due to SARS-CoV-2, the number of cases with ARDS has increased worldwide, making it essential to compare this form of acute respiratory failure with classical causes of ARDS. While there have been several studies investigating the differences between COVID-19 and non-COVID-19 ARDS in early stages of the pandemic, little is known about the differences in later phases, especially in Germany. Aim: The aim of this study is to characterize and compare the comorbidities, treatments, adverse events, and outcomes of COVID-19-associated ARDS and non-COVID-19 ARDS using a representative sample of German health claims data from the years 2019 and 2021. Methods: We compare percentages and median values of the quantities of interest from the COVID-19 and non-COVID-19 ARDS group, with p-values calculated after conducting Pearson’s chi-squared test or the Wilcoxon rank sum test. We also run logistic regressions to access the effect of comorbidities on mortality for COVID-19 ARDS and non-COVID-19 ARDS. Results: Despite many similarities, we find that that there are some remarkable differences between COVID-19 and non-COVID-19 ARDS cases in Germany. Most importantly, COVID-19 ARDS cases display fewer comorbidities and adverse events, and are more often treated with non-invasive ventilation and nasal high-flow therapy. Conclusions: This study highlights the importance of comprehending the contrasting epidemiological features and clinical outcomes of COVID-19 and non-COVID-19 ARDS. This understanding can aid in clinical decision making and guide future research initiatives aimed at enhancing the management of patients afflicted with this severe condition

    Characterization of Six-Degree-of-Freedom Sensors for Building Health Monitoring

    Get PDF
    Six-degree-of-freedom (6DoF) sensors measure translation along three axes and rotation around three axes. These collocated measurements make it possible to fully describe building motion without the need for an external reference point. This is an advantage for building health monitoring, which uses interstory drift and building eigenfrequencies to monitor stability. In this paper, IMU50 6DoF sensors are characterized to determine their suitability for building health monitoring. The sensors are calibrated using step table methods and by comparison with earth’s rotation and gravity. These methods are found to be comparable. The sensor’s self-noise is examined through the power spectral density and the Allan deviation of data recorded in a quiet environment. The effect of temperature variation is tested between 14 and 50 ∘C. It appears that the self-noise of the rotation components increases while the self-noise of the acceleration components decreases with temperature. The comparison of the sensor self-noise with ambient building signal and higher amplitude shaking shows that these sensors are in general not sensitive enough for ambient signal building health monitoring in the frequency domain, but could be useful for monitoring interstory drift and building motion during, for example, strong earthquake shaking in buildings similar to those examined here

    How technology commitment affects mode choice for a self-driving shuttle service

    No full text
    Although automation of motorized vehicles has the potential to transform public transport as we know it, prospective users are still skeptical. Trials with shared autonomous vehicles (AVs) offer an opportunity to assess future demand in a more realistic setting. In the context of an autonomous shuttle service trial operating on public road-space in Switzerland, we carried out a mode choice experiment with a random sample of 773 potential users. Study participants could choose between a rental bike, walking, and the autonomous bus at varying costs, travel time, occupation, and weather conditions. Based on attitudinal survey items on technology commitment, consisting of technology acceptance, control, and competence that were integrated into a latent variable model, we study how technology commitment affects mode choice behaviour. While results show a comparably low willingness to pay, they also indicate that technology acceptance is a robust predictor of autonomous bus usage. In line with the technology adoption life cycle argument, potential users are currently mainly technology enthusiasts. Thus, in order to also “bring on board” the less technophile parts of the population, improved communication of AV benefits will be required
    corecore