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Abstract. Pollinators face multiple pressures and there is evidence of populations in
decline. As demand for insect-pollinated crops increases, crop production is threatened by
shortfalls in pollination services. Understanding the extent of current yield deficits due to
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pollination and identifying opportunities to protect or improve crop yield and quality through
pollination management is therefore of international importance. To explore the extent of “pol-
lination deficits,” where maximum yield is not being achieved due to insufficient pollination,
we used an extensive dataset on a globally important crop, apples. We quantified how these
deficits vary between orchards and countries and we compared “pollinator dependence” across
different apple varieties. We found evidence of pollination deficits and, in some cases, risks of
overpollination were even apparent for which fruit quality could be reduced by too much polli-
nation. In almost all regions studied we found some orchards performing significantly better
than others in terms of avoiding a pollination deficit and crop yield shortfalls due to subopti-
mal pollination. This represents an opportunity to improve production through better pollina-
tor and crop management. Our findings also demonstrated that pollinator dependence varies
considerably between apple varieties in terms of fruit number and fruit quality. We propose
that assessments of pollination service and deficits in crops can be used to quantify supply and
demand for pollinators and help to target local management to address deficits although crop
variety has a strong influence on the role of pollinators.

Key words: agro-ecology; apples;Malus domestica; pollinators; sustainable crop production.

INTRODUCTION

Demand for crops that rely on insect pollinators is
increasing on a global scale (Aizen et al. 2019). Yet, due
to multiple threats (Vanbergen and Initiative 2013, Potts
et al. 2016), populations of both wild and managed pol-
linators may not meet present or future demands for pol-
lination service provision, compromising production by
limiting yield and quality of crops. We are increasingly
aware of the significant contribution that pollinators
make to global food production, particularly of nutri-
tionally important crops (Smith et al. 2015). In addition,
as evidence of yield deficits emerge (Garibaldi et al.
2016), there is a need to ensure pollination services are
supported through policy and practice (Dicks et al.
2016, Potts et al. 2016, Garibaldi et al. 2019). Avoiding
mismatches between the supply of, and demand for, this
valuable ecosystem service is vital for future sustainable
food production.
Cost-effective management of insect pollination services

by farmers, land managers, and policy makers requires
coordinated action at field, farm and landscape scales
(Garibaldi et al. 2019), and both wild and managed polli-
nators may be required to ensure adequate pollen transfer
and optimal crop production (Garibaldi et al. 2014, Isaacs
et al. 2017). However, matching pollination supply and
demand to optimize yield and quality is not always
straightforward as it requires combined knowledge of both
a crop’s breeding system (Hudewenz et al. 2013, Benjamin
andWinfree 2014, Garratt et al. 2016), aswell as the influ-
ence of environmental and management context on polli-
nation. For example, agronomic inputs including
fertilizers and irrigation (Klein et al. 2015, Garratt et al.
2018), biological factors such as pest pressure (Barber
et al. 2012, Bartomeus et al. 2015, Sutter and Albrecht
2016, Samneg�ard et al. 2019), and even environmental
and climatic variables (Bishop et al. 2016), can result in
complex interactions that affect the contribution of polli-
nators to crop yield (Tamburini et al. 2019).
Apples are a globally significant crop valued at US$45

bn annually (FAOStat 2018), with high economic and

nutritional value. They are grown by large-scale com-
mercial operations and small-scale farmers alike. Apple
production relies on insect pollination (Ram�ırez and
Davenport 2013, Cross et al. 2015, Demestihas et al.
2017), but the degree of pollination by either managed
or wild pollinators varies (Stern et al. 2001, Martins
et al. 2015, F€oldesi et al. 2016, Joshi et al. 2016, Geslin
et al. 2017), and the delivery of pollination service has
been found to depend on apple variety (Garratt et al.
2016). Despite relatively few reported examples (Garratt
et al. 2014, Blitzer et al. 2016), pollination deficits could
arise due to pollinator loss, poor weather during flower-
ing, insufficient availability of compatible pollen, or a
number of other factors. Yet we are not sure in which
regions and varieties this is indeed a potential hazard, or
if in fact deficits already exist.
Sustainable crop production depends on approaches

that help to predict potential and actual risks of yield
losses arising from pollination shortfalls and identifying
orchards where production is limited to target interven-
tions. Using a global dataset, we set out to answer the
following research questions: (1) How widespread are
pollination deficits in apples and to what extent do these
vary among orchards and countries? (2) How does crop
variety influence dependence on pollinators and pollina-
tion deficits? and (3) How does pollination effect aspects
of both fruit yield and fruit quality across different apple
varieties?

METHODS

Datasets

We gathered datasets on insect pollination in apples
from regions around the world, including intensive com-
mercial orchards and low-intensity smaller-scale produc-
tion. The analysis involved working with raw datasets
and data holders were identified and approached follow-
ing a workshop held on apple pollination as part of the
“Sustainable Pollination in Europe” Super-B COST
Action Project to which European and other
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international researchers were invited. Studies were
included if they involved manipulation of apple blos-
soms. Manipulations included pollinator exclusion using
net bags, supplementary pollination, whereby pollen was
applied by hand using compatible pollen from local pol-
linizer trees or neighboring varieties, and open “con-
trols” accessible to insect visits. Studies recorded metrics
of apple pollination, including early fruit set and seed
number per apple, or apple production such as fruit set
at harvest and fruit quality in terms of apple size (maxi-
mum width mm), weight (g), firmness (kg cm–1 mea-
sured using a penetrometer) and sugar content (% brix
measured using a refractometer). The analyses in which
each study was involved depended on data availability
and metrics taken, so not all studies were incorporated
into all analyses. In total, data from 14 countries and
five continents was analyzed, comprising 36 apple vari-
eties across 356 orchards (Appendix S1: Table S1).

Calculating pollinator dependence, service and deficits

Using data from pollinator exclusion, open pollination
and supplementary hand pollination (from this point for-
wards supplementary pollination) treatments, levels of polli-
nator dependence, pollination service, and pollination
deficit were assessed across orchards, countries, and apple
varieties for a number of apple response metrics. These
response metrics can be divided into two broad categories:
“pollination” and “production.” We used early fruit and
seed number to represent “pollination” as they reflected the
level of compatible pollen delivery to apple flowers but are
not intrinsically of value to farmers. Final fruit set at

harvest, yield (fruit set 9 fruit weight), and apple quality
(size, sugar content, firmness) represent final crop outputs
for farmers and were considered as “production” metrics.
“Pollinator dependence” represents the potential contribu-
tion of insect pollinators to these metrics, and was calcu-
lated by subtraction of the output achieved following the
exclusion of insect pollinators, from the maximum achiev-
able by supplementary pollination. “Pollination service”
represents the realized contribution of insects to pollination
at any given place and time. It was calculated by subtracting
the output from pollinator exclusion treatments from that
recorded under open pollination treatments. Finally, “Polli-
nation deficit” represent a shortfall in output due to a lack
of pollination and was calculated by subtracting outputs
from open pollination treatments from those achieved
under supplementary pollination (Fig. 1).

Pollination service and deficits across countries, orchards
and varieties

To assess the extent of yield loss in orchards resulting
from insufficient pollination (a pollination deficit), data-
sets from studies that had implemented supplementary
pollination and open pollination treatments in at least
three orchards of the same variety in the same country
and included production variables, namely final fruit set
and fruit weight, were analysed. This included data for 11
apple varieties across five countries. Pollination service
and deficit were calculated as a proportion of maximum
yield achieved in either open or supplementary treatments,
whichever was greatest. To compare between countries
and varieties, the pollination deficit (� 95% confidence

FIG. 1. Theoretical output achieved under different experimental treatments. (a) Pollinator dependence, i.e., the level to which
insects could contribute to pollination. (b) Pollination service, i.e., the extent to which pollinator dependence is met by ambient pol-
lination conditions. (c) Pollination deficits in apple pollination or production, i.e., the shortfall of ambient pollination below maxi-
mum potential pollination.
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limits) was calculated across orchards for each country
and variety combination. Countries and varieties for
which confidence limits fell outside a zero deficit were con-
sidered to have a significant system-level deficit for yield.
To identify orchards with a significant pollination defi-

cit relative to other orchards in that country growing the
same apple variety, data were used from orchards where
supplementary and open pollination treatments were
implemented on at least three replicate locations within
the orchard. Mean pollination deficits were then calcu-
lated for each orchard. If the 95% confidence limits for
each orchard did not include the mean of the orchard
with the pollination deficit closest to zero within that vari-
ety and country, the orchard was considered as having a
significant yield deficit requiring pollination management.
Due to the effects of experimental scale on assessments of
pollination (Bishop et al. 2020, Webber et al. 2020), only
orchards within each country and variety where experi-
mental manipulations used the same unit of assessment
(e.g. tree branch) were compared. To assess the relation-
ship between the extent of pollination deficits and the
level of pollination service measured in each orchard, a

linear mixed effect model was used, with orchard, apple
variety, study, and country as nested random effects.

Differences in pollination dependence between varieties

Linear mixed effects models were used to compare polli-
nator dependence of both pollination and production met-
rics between apple varieties. In total, 17 studies involving 26
apple varieties included a supplementary pollination treat-
ment and pollinator exclusion treatment and recorded at
least one pollination or production metric. Pollination treat-
ment (pollinator exclusion or supplementary pollination),
variety, and their interaction were included as fixed effects in
the model. Study, orchard, and sampling location within
orchards were included as nested random effects. To test for
a significant interaction between pollination treatment and
apple variety (P > 0.05) models with and without the inter-
action term were compared using a maximum likelihood
ratio test. Both early and final percent fruit set were arcsine
transformed, and seed number and firmness log-
transformed prior to analysis. Model residuals were checked
to ensure that they met model assumptions. To assess for

FIG. 2. Deficits in yield due to suboptimal pollination in orchards (individual points) separated by apple variety (color) per
country. Mean and 95% CI are shown for each variety within each country (“various” refers to orchards made up of multiple vari-
eties). A positive deficit occurs when yield is greater under supplementary pollination compared with open pollination treatments,
and a negative deficit occurs when yield in open treatments is greater than for supplementary pollination. Points in circles represent
individual orchards with a significant deficit in yield relative to the best performing orchard growing that variety in that country
(i.e., the orchard with a pollination deficit closest to 0).
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significant treatment effects on pollination and production
metrics for each variety, post-hoc Tukey tests were carried
out.

Relationships between pollination and production

To examine the relationships between pollination and
production, the relationships between seed number and
final fruit set or apple size were investigated using linear
mixed effects models. Variety and either seed number or
percentage fruit set and their interaction were included
in the models as fixed effects. Study, orchard, and sam-
pling location within orchard were treated as random
effects. Again, seed number was log-transformed prior
to analysis. All statistical analyses were carried out in R
v. 4.0.3 using packages lme4 (Bates et al. 2014), nlme
(Pinheiro et al. 2013), and multcomp (Hothorn et al.
2008, R_Core_Team 2017).

RESULTS

Pollination service and deficits across countries, orchards
and varieties

Data from 11 varieties and five countries included
open, pollinator exclusion and supplementary pollina-
tion treatments and measured final fruit set and apple
weight, allowing for orchard-level assessments of polli-
nation service and pollination deficits for yield. Orch-
ards growing three apple varieties from two countries
showed a significant pollination deficit overall: Gala and
Hastings orchards in the UK; as well as Braeburn orch-
ards in Germany (Fig. 2). Orchards growing mixed

varieties of apples in Kyrgyzstan had a significantly neg-
ative deficit, indicating that supplementary pollination
reduced the yield compared with open pollination. At
least one orchard per country and apple variety showed
significant pollination deficits relative to the best per-
forming orchard in that country growing the same vari-
ety (Fig. 2), except for in Kyrgyzstan where multiple
pollination assessments per orchard were not made, so
individual orchard comparisons were not possible.
A negative linear relationship between pollination def-

icits and pollination service for yield was observed
(t = �3.40, P < 0.001) (Appendix S1: Table S2), indi-
cating that orchards with high values of pollination ser-
vice were less likely to have pollination deficits (Fig. 3).

Differences in pollinator dependence between varieties

The pollinator dependence of apples varied consider-
ably among varieties for metrics of pollination, with
mean dependence ranging from 0.0 to 1.0 for early fruit
set and 0.68 to 1.0 for seed number (Fig. 4). There was a
significant interaction between variety and pollination
treatment for both early fruit set (F = 18.79, P < 0.001)
and seed number (F = 6.20, P < 0.001). A significant
effect of pollination treatment was observed for 12 out
of 14 varieties for early fruit set and all 10 varieties for
seed number (Fig. 4a, b; Appendix S1: Tables S3, S4).
The pollinator dependence of apple production in

terms of final fruit set and quality also varied consider-
ably among varieties (Fig. 5). Mean dependence of final
fruit set ranged from �0.42 and 1.0 depending on vari-
ety, with a significant interaction between experimental
treatment and variety (F = 8.61, P = <0.001) and

FIG. 3. Relationship between pollination service (i.e., the current contribution of insects to yield) and pollination deficits (a
shortfall in yield due to suboptimal pollination) for apple orchards across countries and varieties. Linear model and 95% confidence
limits are shown.
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significant differences between pollination treatments
were observed for 9 out of 15 varieties (Appendix S1:
Table S5). There was also an interactive effect of variety
and pollination treatment on apple size (F = 8.20,
P < 0.001), and firmness (F = 3.64, P = 0.012)
(Appendix S1: Tables S6, S7). In contrast, interactive
effects of variety and pollination treatment were not
found for sugar content (F = 0.98, P = 0.42). When all
varieties were considered together there was a significant
difference in sugar content observed between pollination
treatments (F = 7.19, P = 0.006) but not between apple
varieties (F = 1.97, P = 0.09) (Appendix S1: Table S8).

Relationship between pollination and production

Metrics of pollination and production were interre-
lated, but the direction of these relationships varied
among varieties. The relationship between seed number
and fruit size depended on apple variety (F = 5.83,
P < 0.001) (Appendix S1: Table S9). Seven varieties
showed a positive relationship, in which apples contain-
ing more seeds were also larger, while two varieties
showed a negative relationship. The relationship between
final fruit set and fruit size was also variety dependent
(F = 3.45, P < 0.001) (Appendix S1: Table S10); some

FIG. 4. The extent to which early fruit set (a) and seed number (b) of different apple varieties depend on pollination using avail-
able data from all orchards and countries. Mean pollinator dependence and 95% CI are shown for each variety and grand mean
across varieties shown as a dashed line. Varieties marked with “*” indicate those with significant differences found between supple-
mentary pollination and pollinator exclusion treatments (P < 0.05).
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FIG. 5. The extent to which the production of different apple varieties, measured as final fruit set (a), and fruit quality, in terms
of firmness (b) and size (c), depend on pollination using available data from all orchards and countries. Mean pollinator dependence
and 95% CI are shown for each variety and grand mean for fruit set across varieties is shown as a dashed line in (a). Varieties
marked with “*” indicate significant differences between pollinator exclusion and supplementary pollination treatments (P < 0.05).
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varieties exhibited a positive, some a negative, and others
no relationship (Fig. 6).

DISCUSSION

Individual orchards and regions experiencing pollina-
tion deficits (i.e. production shortfalls due to pollina-
tion) were identified in this study (Fig. 2) and pointed to
an opportunity for optimizing pollination management.
Observed deficits could be the result of numerous factors
including insufficient abundance and diversity of wild
pollinators (Martins et al. 2015, Blitzer et al. 2016, Grab
et al. 2019), a lack of availability or awareness of the
need for managed pollinators (Stern et al. 2001, Geslin
et al. 2017), suboptimal fruit management practices such
as thinning (Link 2000) or the lack of appropriate “polli-
nizer” trees providing compatible pollen (Ram�ırez and
Davenport 2013), agrochemicals impacts (Stanley et al.
2015), or even overpollination (S�aez et al. 2014). In most
study countries, we observed at least one orchard with
optimal pollination services (i.e., deficits close to 0),
which indicated that there were no regional constraints
on achieving optimal pollination. These orchards with
no or lower deficits could act as “agroecological light-
house” orchards (Nicholls and Altieri 2018) providing a
management and contextual role model for others to fol-
low and help to identify factors that limit production on
farms with deficits, or to provide a platform to share
management practices that ensure optimal pollination.
This would allow for directed management toward
achieving better pollination services. Best practices
would need to be shared using effective tools and tech-
niques, and exploit appropriate networks for each region
and group of growers (Ingram 2008, Klerkx and Jansen
2010).
The link between pollination deficits in yield and level

of pollination services across orchards demonstrated in
this study indicates that an important driver of produc-
tion deficits is low levels of insect pollination. These
yield deficits could be addressed through habitat man-
agement (Blaauw and Isaacs 2014, F€oldesi et al. 2016,
Sutter et al. 2018), by avoiding pesticides harmful to
wild pollinators (Park et al. 2015, Stanley et al. 2015) or
through the effective use of managed pollinators (Stern
et al. 2001, Geslin et al. 2017). In the past, the uptake of
practices to promote biodiversity-based ecosystem ser-
vices has been slow, however, identifying deficits in pro-
duction metrics such as yield and quality, familiar to
farmers, may encourage uptake of ecologically responsi-
ble practices (Kleijn et al. 2019). To increase the likeli-
hood of positive action taking place, farmers and their
advisers can be encouraged to employ methods similar
to those used in this study to assess their own levels of
pollination service and deficit (i.e. by bagging flowers
and carrying out supplementary pollination), therefore
becoming more engaged with the process and gathering
targeted data on which they can make informed manage-
ment decisions (Garratt et al. 2019). The scale at which

supplementary and pollinator exclusion techniques are
used, and whether manipulations are carried out on the
whole tree, single branches, or groups of flowers can
influence the resulting deficits (Bishop et al. 2020, Web-
ber et al. 2020), therefore widespread assessment should
use common protocols and focus on collecting produc-
tion metrics relevant to growers, such as yield (Garratt
et al. 2019).
Our study has identified yield deficits due to subopti-

mal pollination in apple production and the extent to
which these vary across orchards. Although we showed
that these deficits are likely to be a result of insufficient
pollination by insects, additional research is required to
identify exact causes. If, for example, there is a
landscape-wide limitation in wild pollinator abundance
(Martins et al. 2015, Park et al. 2015, Kremen and
Merenlender 2018, Winfree et al. 2018), then the capac-
ity of individual farmers to control this is limited. In
such circumstances, amendments to policy may be neces-
sary to promote large-scale collaborative action (Gari-
baldi et al. 2019). This is particularly relevant to regions
in the UK and Germany and for the varieties Hastings
and Braeburn, respectively, as overall these orchards
appear to be experiencing a deficit, reflective of a regio-
nal or varietal, rather than orchard-scale challenge. That
apples are effectively pollinated by a wide variety of
insects (Pardo and Borges 2020), even away from their
native range, means that management targeting different
and locally available pollinators could deliver benefits.
Similarly to other insect-pollinated crops (Hudewenz

et al. 2013, Benjamin and Winfree 2014) we observed
that dependence on insect pollination varied consider-
ably between apple varieties in both pollination, with
seed number dependence ranging from 0.68 to 1.0, and
production, with dependence of fruit set at harvest
between �0.42 and 1.0. This negative dependence could
indicate that some varieties are potentially at risk of
overpollination, although this negative dependence was
not significant for any variety. It should also be noted
that the response of a tree to supplementary pollination
or pollinator exclusion may be influenced by external
factors such as orchard management practice or sea-
sonal conditions during the study year and could affect
the level of dependence measured. Without measuring
the dependence of different varieties across multiple
regions and years, it is not possible to account fully for
these confounding effects. However, the extent of varia-
tion in pollinator dependence that we present in this
study demonstrate that variety is a key factor to consider
when implementing pollinator management strategies in
apple orchards. The level of dependence on insect polli-
nators will ultimately dictate the vulnerability of produc-
tion to pollinator declines, or the extent of opportunities
available to increase production. We found examples in
which varieties were entirely pollinator dependent for
fruit and seed number, while a minority appeared rela-
tively self-compatible (e.g. Ingrid-Marie) due to
unknown factors (e.g., parthenocarpy, floral anatomy
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FIG. 6. Relationship between metrics of pollination and production in different apple varieties including (a) seed number and
apple size at harvest, and (b) final fruit set and apple size at harvest for multiple apple varieties. Only varieties with at least three
data points were included. Linear model and 95% confidence limits are shown.
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promoting self-pollination). Breeding self-compatibility
into crops has been proposed as a possible strategy to
reduce their vulnerability to limited pollination provided
by insects (Knapp et al. 2017). Such an approach could
be adopted for apples, targeting at-risk regions or vari-
eties. However, self-pollination can potentially have an
impact on the micronutritional and other quality param-
eters of fruit (Eilers et al. 2011, Klatt et al. 2014). Fur-
thermore, self-incompatibility is the norm in commercial
apple varieties (Matsumoto 2014) and, as apples are a
long-lived perennial crop, breeding takes decades. Also,
perhaps more than any other crop, the apple variety is a
key component of consumer preferences, so the contin-
ued demand for many current popular apple varieties
that are self-incompatible is likely.
Overpollination is a risk in some crops (S�aez et al. 2014),

and we found evidence of overpollination in apples, with
some individual orchards demonstrating significantly nega-
tive pollination deficits, indicating that enhancing pollina-
tion compared with current levels could harm production.
Across our studies, compatible pollen was used and care
was taken not to damage flowers when implementing sup-
plementary pollination treatments, but ineffective manual
pollination, poor pollen quality, or stigmas clogged with
incompatible pollen can lead to underestimates of deficits;
if assessment of pollination services is to become wide-
spread then methods should be standardized (Webber et al.
2020). However, our results identified a mechanism for this
apparent overpollination in apples, as some varieties
showed that increasing fruit set or seed number, metrics
particularly responsive to insect pollination (Garratt et al.
2014, 2016), resulted in reduced fruit quality in terms of
size. This was particularly prominent for Bramley, Topaz
and Golden Delicious. This overpollination is likely to be a
result of resource limitation in trees; when fruit set is high,
the maximum fruit size achieved by the tree is reduced. This
is an example of a trade-off between pollination and other
inputs (Garratt et al. 2018, Tamburini et al. 2019). In
apples, growers are aware of this trade-off and use mechani-
cal and chemical flower and fruit thinning practices to opti-
mize fruit number and, therefore, fruit quality which
underpins the economic output in many regions (Link
2000, Garratt et al. 2014). For other varieties, increasing
seed number through better insect pollination increased
apple size (e.g. Gala, Braeburn).
Optimizing pollination services through abundant and

diverse pollinator communities is likely to ensure resili-
ence in pollination services (Bartomeus et al. 2013, Brit-
tain et al. 2013) and sufficient fruit set every year,
provided that thinning and pruning practices are effec-
tive in years with high fruit load. Our results highlight
an opportunity for farmers to accrue benefits by moni-
toring pollination services and crop production on their
farms (Garratt et al. 2019) and by using appropriate
management practices in those apple varieties and indi-
vidual farms to limit pollination deficits and overpolli-
nation. Furthermore, consistent multiyear assessments
of insect-pollinated crops would expand our

understanding of crop pollination and the limits to yield
across the globe. Implementing standardized methods
across more sites, more varieties, and more years would
provide important insight into the changing status of
pollination services across space and time (Breeze et al.
2021).

CONCLUSIONS

In this study, adopting apple as an example of an impor-
tant insect-pollinated crop, we showed how the assessment
of pollination services could be used to quantify and com-
pare pollination deficits across orchards. Such approaches
could be applied to other insect-pollinated crops to under-
stand the extent of pollination service limitations on pro-
duction. Moreover, orchardists can follow the example of
fields, farms, and regions where pollination is optimal, tak-
ing them as model systems to help develop management
approaches that would improve pollination services. Such
approaches to matching pollination supply and demand
are most effective when farmers are able to assess their
own crop pollination status, allowing them to make man-
agement decisions on field-by-field and season-to-season
bases. Supplementary and pollinator exclusion techniques
can be adapted and made user friendly, allowing farmers
to adapt these techniques for their own crops (Garratt
et al. 2019). Ultimately if we are to understand and miti-
gate the consequence of pollinator declines globally, then
we need to make assessments and take action locally; the
approaches identified in this study are a step toward this.
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