5 research outputs found

    Biomass and leaf acclimations to ultraviolet solar radiation in juvenile plants of Coffea arabica and C. Canephora

    Get PDF
    E-26/202.323/2017 E-26/202.759/2018 E-26/210.309/2018 E-26/210.037/2020 PV 312959/2019-2 PQ 300996/2016 PVS 00583/20 UID/04129/2020 Funding Information: The authors acknowledge Funda??o Carlos Chagas de Apoio ? Pesquisa do Estado do Rio de Janeiro (FAPERJ) (Grants E-26/202.323/2017, WPR; E-26/202.759/2018, E-26/210.309/2018 and E-26/210.037/2020, EC), CNPq (awarded the fellowships: PV 312959/2019-2, MR; PQ 300996/2016, EC), and PVS 00583/20, EC FAPEMA (Funda??o de Amparo ? Pesquisa e ao Desenvolvimento Cient?fico e Tecnol?gico do Maranh?o), all from Brazil. Support from Funda??o para a Ci?ncia e a Tecnologia I.P., Portugal, to J.C.R. through the units UID/04129/2020 (CEF) and UIDP/04035/2020 (GeoBioTec) is also greatly acknowledged. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Despite the negative impacts of increased ultraviolet radiation intensity on plants, these organisms continue to grow and produce under the increased environmental UV levels. We hypothe-sized that ambient UV intensity can generate acclimations in plant growth, leaf morphology, and photochemical functioning in modern genotypes of Coffea arabica and C. canephora. Coffee plants were cultivated for ca. six months in a mini greenhouse under either near ambient (UVam) or reduced (UVre) ultraviolet regimes. At the plant scale, C. canephora was substantially more impacted by UVam when compared to C. arabica, investing more carbon in all juvenile plant components than under UVre. When subjected to UVam, both species showed anatomic adjustments at the leaf scale, such as increases in stomatal density in C. canephora, at the abaxial and adaxial cuticles in both species, and abaxial epidermal thickening in C. arabica, although without apparent impact on the thickness of palisade and spongy parenchyma. Surprisingly, C. arabica showed more efficient energy dissipation mechanism under UVam than C. canephora. UVam promoted elevated protective carotenoid content and a greater use of energy through photochemistry in both species, as reflected in the photochemical quenching increases. This was associated with an altered chlorophyll a/b ratio (significantly only in C. arabica) that likely promoted a greater capability to light energy capture. Therefore, UV levels promoted different modifications between the two Coffea sp. regarding plant biomass production and leaf morphology, including a few photochemical differences between species, suggesting that modifications at plant and leaf scale acted as an acclimation response to actual UV intensity.publishersversionpublishe

    Exploring the Potential of Heterosis to Improve Nitrogen Use Efficiency in Popcorn Plants

    Get PDF
    Nitrogen is crucial for plant growth and development, and improving nitrogen use efficiency (NUE) is a viable strategy for reducing dependence on nitrogen inputs and promoting sustainability. While the benefits of heterosis in corn are well known, the physiological mechanisms underlying this phenomenon in popcorn are less understood. We aimed to investigate the effects of heterosis on growth and physiological traits in four popcorn lines and their hybrids under two contrasting nitrogen conditions. We evaluated morpho-agronomic and physiological traits such as leaf pigments, the maximum photochemical efficiency of PSII, and leaf gas exchange. Components associated with NUE were also evaluated. N deprivation caused reductions of up to 65% in terms of plant architecture, 37% in terms of leaf pigments, and 42% in terms of photosynthesis-related traits. Heterosis had significant effects on growth traits, NUE, and foliar pigments, particularly under low soil nitrogen conditions. N-utilization efficiency was found to be the mechanism favoring superior hybrid performance for NUE. Non-additive genetic effects were predominant in controlling the studied traits, indicating that exploring heterosis is the most effective strategy for obtaining superior hybrids to promote NUE. The findings are relevant and beneficial for agro farmers seeking sustainable agricultural practices and improved crop productivity through the optimization of nitrogen utilization

    Photosynthetic capacity, leaf respiration and growth in two papaya (Carica papaya) genotypes with different leaf chlorophyll concentrations

    Get PDF
    StudiesGolden genotype of papaya (Carica papaya), named for its yellowish leaves, produces fruits very much appreciated by consumers worldwide. However, its growth and yield are considerably lower than those of other genotypes, such as ‘Sunrise Solo’, which has intensely green leaves. We undertook an investigation with the goal of evaluating key physiological traits that can affect biomass accumulation of both Golden and Sunrise Solo genotypes. Papaya seeds from two different genotypes with contrasting leaf colour ‘Sunrise Solo’ and Golden were grown in greenhouse conditions. Plant growth (plant height, leaf number, stem diameter, leaf area, plant dry weight), leaf gas exchanges, leaf carbon balance, RuBisCO oxygenation and carboxylation rates, nitrogen, as well as chlorophyll concentrations and fluorescence variables were assessed. Although no significant differences were observed for photosynthetic rates between genotypes, the accumulation of small differences in photosynthesis, day after day, over a long period, might contribute to some extend to a higher C-budget in Sunrise Solo, higher leaf area and, thus, to higher productivity. Additionally, we consider that physiological processes other than photosynthesis and leaf respiration can be as well involved in lower growth and yield of Golden. One of these aspects could be related to the higher rates of photorespiration observed in Sunrise Solo, which could improve the rate of N assimilation into organic compounds, such as amino acids, thus contributing to the higher biomass production in Sunrise Solo relative to Golden. Further experiments to evaluate the effects of N metabolism on physiology and growth of Golden are required as it has the potential to limit its yieldinfo:eu-repo/semantics/publishedVersio

    Additive and Non-Additive Effects on the Control of Key Agronomic Traits in Popcorn Lines under Contrasting Phosphorus Conditions

    No full text
    Phosphorus is a non-renewable natural resource that will run out of reserves in the upcoming decades, making it essential to understanding the inheritance of nutrient use efficiency for selecting superior genotypes. This study investigated the additive and non-additive effects of commercially relevant traits for the popcorn crop (grain yield—GY, popping expansion—PE, and expanded popcorn volume per hectare—PV) in different conditions of phosphorus (P) availability in two locations in Rio de Janeiro State, Brazil. Six S7 lines previously selected for P use—L59, L70, and P7, efficient and responsive; and L54, L75, and L80, inefficient and non-responsive—were used as testers in crosses with 15 progenies from the fifth cycle of intrapopulation recurrent selection of UENF-14, with adaptation to the North and Northwest regions of Rio de Janeiro State. Using the Griffing diallel analysis, P use efficiency was predominantly additive in the expression of PE, and non-additive effects were prominent for GY and PV. For obtaining genotypes that are efficient for phosphorus use, it is recommended that heterosis with parents that provide additive gene accumulation for PE be explored
    corecore