161 research outputs found

    Analyzing repeated data collected by mobile phones and frequent text messages. An example of Low back pain measured weekly for 18 weeks

    Get PDF
    BACKGROUND: Repeated data collection is desirable when monitoring fluctuating conditions. Mobile phones can be used to gather such data from large groups of respondents by sending and receiving frequently repeated short questions and answers as text messages. The analysis of repeated data involves some challenges. Vital issues to consider are the within-subject correlation, the between measurement occasion correlation and the presence of missing values. The overall aim of this commentary is to describe different methods of analyzing repeated data. It is meant to give an overview for the clinical researcher in order for complex outcome measures to be interpreted in a clinically meaningful way. METHODS: A model data set was formed using data from two clinical studies, where patients with low back pain were followed with weekly text messages for 18 weeks. Different research questions and analytic approaches were illustrated and discussed, as well as the handling of missing data. In the applications the weekly outcome “number of days with pain” was analyzed in relation to the patients’ “previous duration of pain” (categorized as more or less than 30 days in the previous year). Research questions with appropriate analytical methods 1: How many days with pain do patients experience? This question was answered with data summaries. 2: What is the proportion of participants “recovered” at a specific time point? This question was answered using logistic regression analysis. 3: What is the time to recovery? This question was answered using survival analysis, illustrated in Kaplan-Meier curves, Proportional Hazard regression analyses and spline regression analyses. 4: How is the repeatedly measured data associated with baseline (predictor) variables? This question was answered using generalized Estimating Equations, Poisson regression and Mixed linear models analyses. 5: Are there subgroups of patients with similar courses of pain within the studied population? A visual approach and hierarchical cluster analyses revealed different subgroups using subsets of the model data. CONCLUSIONS: We have illustrated several ways of analysing repeated measures with both traditional analytic approaches using standard statistical packages, as well as recently developed statistical methods that will utilize all the vital features inherent in the data

    Hard and transparent films formed by nanocellulose-TiO2 nanoparticle hybrids

    Get PDF
    T he formation of hybrids of nanofibrillated cellulose and titania nanoparticles in aqueous media has been studied. Their transparency and mechanical behavior have been assessed by spectrophotometry and nanoindentation. The results show that limiting the titania nanoparticle concentration below 16 vol% yields homogeneous hybrids with a very high Young's modulus and hardness, of up to 44 GPa and 3.4 GPa, respectively, and an optical transmittance above 80%. Electron microscopy shows that higher nanoparticle contents result in agglomeration and an inhomogeneous hybrid nanostructure with a concomitant reduction of hardness and optical transmittance. Infrared spectroscopy suggests that the nanostructure of the hybrids is controlled by electrostatic adsorption of the titania nanoparticles on the negatively charged nanocellulose surfaces

    Newborn screening for presymptomatic diagnosis of complement and phagocyte deficiencies

    Full text link
    The clinical outcomes of primary immunodeficiencies (PIDs) are greatly improved by accurate diagnosis early in life. However, it is not common to consider PIDs before the manifestation of severe clinical symptoms. Including PIDs in the nation-wide newborn screening programs will potentially improve survival and provide better disease management and preventive care in PID patients. This calls for the detection of disease biomarkers in blood and the use of dried blood spot samples, which is a part of routine newborn screening programs worldwide. Here, we developed a newborn screening method based on multiplex protein profiling for parallel diagnosis of 22 innate immunodeficiencies affecting the complement system and respiratory burst function in phagocytosis. The proposed method uses a small fraction of eluted blood from dried blood spots and is applicable for population-scale performance. The diagnosis method is validated through a retrospective screening of immunodeficient patient samples. This diagnostic approach can pave the way for an earlier, more comprehensive and accurate diagnosis of complement and phagocytic disorders, which ultimately lead to a healthy and active life for the PID patientsThis work was supported by the Swedish Research Council (VR) and grants provided by the Stockholm County Council (ALF)

    Origin of the large dispersion of magnetic properties in nanostructured oxides: FexO/Fe3O4 nanoparticles as a case study

    Get PDF
    The intimate relationship in transition-metal oxides between stoichiometry and physiochemical properties makes them appealing as tunable materials. These features become exacerbated when dealing with nanostructures. However, due to the complexity of nanoscale materials, establishing a distinct relationship between structure-morphology and functionalities is often complicated. In this regard, in the FexO/Fe3O4 system a largely unexplained broad dispersion of magnetic properties has been observed. Here we show, thanks to a comprehensive multi-technique approach, a clear correlation between magneto-structural properties in large (45 nm) and small (9 nm) FexO/Fe3O4 core/shell nanoparticles that can explain the spread of magnetic behaviors. The results reveal that while the FexO core in the large nanoparticles is antiferromagnetic and has bulk-like stoichiometry and unit-cell parameters, the FexO core in the small particles is highly non-stoichiometric and strained, displaying no significant antiferromagnetism. These results highlight the importance of ample characterization to fully understand the properties of nanostructured metal oxide

    Genetic susceptibility to burnout in a Swedish twin cohort

    Get PDF
    Most previous studies of burnout have focused on work environmental stressors, while familial factors so far mainly have been overlooked. The aim of the study was to estimate the relative importance of genetic influences on burnout (measured with Pines Burnout Measure) in a sample of monozygotic (MZ) and dizygotic (DZ) Swedish twins. The study sample consisted of 20,286 individuals, born 1959–1986 from the Swedish twin registry who participated in the cross-sectional study of twin adults: genes and environment. Probandwise concordance rates (the risk for one twin to be affected given that his/her twin partner is affected by burnout) and within pair correlations were calculated for MZ and DZ same—and opposite sexed twin pairs. Heritability coefficients i.e. the proportion of the total variance attributable to genetic factors were calculated using standard biometrical model fitting procedures. The results showed that genetic factors explained 33% of the individual differences in burnout symptoms in women and men. Environmental factors explained a substantial part of the variation as well and are thus important to address in rehabilitation and prevention efforts to combat burnout

    Origin of the large dispersion of magnetic properties in nanostructured oxides: FexO/Fe3O4 nanoparticles as a case study

    Get PDF
    The intimate relationship between stoichiometry and physicochemical properties in transition-metal oxides makes them appealing as tunable materials. These features become exacerbated when dealing with nanostructures. However, due to the complexity of nanoscale materials, establishing a distinct relationship between structure-morphology and functionalities is often complicated. In this regard, in the FexO/Fe3O4 system a largely unexplained broad dispersion of magnetic properties has been observed. Here we show, thanks to a comprehensive multi-technique approach, a clear correlation between the magneto-structural properties in large (45 nm) and small (9 nm) FexO/Fe3O4 core/shell nanoparticles that can explain the spread of magnetic behaviors. The results reveal that while the FexO core in the large nanoparticles is antiferromagnetic and has bulk-like stoichiometry and unit-cell parameters, the FexO core in the small particles is highly non-stoichiometric and strained, displaying no significant antiferromagnetism. These results highlight the importance of ample characterization to fully understand the properties of nanostructured metal oxides

    2D to 3D crossover of the magnetic properties in ordered arrays of iron oxide nanocrystals

    Get PDF
    The magnetic 2D to 3D crossover behavior of well-ordered arrays of monodomain gamma-Fe2O3 spherical nanoparticles with different thicknesses has been investigated by magnetometry and Monte Carlo (MC) simulations. Using the structural information of the arrays obtained from grazing incidence small-angle X-ray scattering and scanning electron microscopy together with the experimentally determined values for the saturation magnetization and magnetic anisotropy of the nanoparticles, we show that MC simulations can reproduce the thickness-dependent magnetic behavior. The magnetic dipolar particle interactions induce a ferromagnetic coupling that increases in strength with decreasing thickness of the array. The 2D to 3D transition in the magnetic properties is mainly driven by a change in the orientation of the magnetic vortex states with increasing thickness, becoming more isotropic as the thickness of the array increases. Magnetic anisotropy prevents long-range ferromagnetic order from being established at low temperature and the nanoparticle magnetic moments instead freeze along directions defined by the distribution of easy magnetization directions
    corecore