8 research outputs found

    Synthesis and structure determination via ultra-fast electron diffraction of the new microporous zeolitic germanosilicate ITQ-62

    Full text link
    [EN] Here, we present the synthesis and structure determination of the new zeolite ITQ-62. Its structure was determined via ultra-fast electron diffraction tomography and refined using powder XRD data of the calcined material. This new zeolite contains a tridirectional channel system of highly distorted 8-rings, as well as a monodirectional 12-ring channel system.The authors gratefully acknowledge financial support from the Spanish Government (MAT2015-71842-P and MAT2015-71261-R MINECO/FEDER and Severo Ochoa SEV-2016-0683). The authors thank ALBA Light Source for beam allocation at the beamline MSPD, and specially thank the Electron Microscopy Service of the Universitat Politecnica de Valencia. Finally, the authors thank Dr Alejandro Vidal and Dr Teresa Blasco for helping in the NMR data discussion.Bieseki, L.; Simancas Coloma, R.; Jorda Moret, JL.; Bereciartua-Pérez, PJ.; Cantin Sanz, A.; Simancas-Coloma, J.; Pergher, SB.... (2018). Synthesis and structure determination via ultra-fast electron diffraction of the new microporous zeolitic germanosilicate ITQ-62. Chemical Communications. 54(17):2122-2125. https://doi.org/10.1039/c7cc09240gS212221255417Barrer, R. M., & Denny, P. J. (1961). 201. Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates. Journal of the Chemical Society (Resumed), 971. doi:10.1039/jr9610000971Kerr, G. T. (1966). Chemistry of Crystalline Aluminosilicates. II. The Synthesis and Properties of Zeolite ZK-4. Inorganic Chemistry, 5(9), 1537-1539. doi:10.1021/ic50043a015Burton, A. W., & Zones, S. I. (2007). Organic Molecules in Zeolite Synthesis: Their Preparation and Structure-Directing Effects. Introduction to Zeolite Science and Practice, 137-179. doi:10.1016/s0167-2991(07)80793-2Zones, S. I., Nakagawa, Y., Lee, G. S., Chen, C. Y., & Yuen, L. T. (1998). Searching for new high silica zeolites through a synergy of organic templates and novel inorganic conditions. Microporous and Mesoporous Materials, 21(4-6), 199-211. doi:10.1016/s1387-1811(98)00011-0Burton, A. W., Zones, S. I., & Elomari, S. (2005). The chemistry of phase selectivity in the synthesis of high-silica zeolites. Current Opinion in Colloid & Interface Science, 10(5-6), 211-219. doi:10.1016/j.cocis.2005.08.005Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713Park, G. T., Jo, D., Ahn, N. H., Cho, J., & Hong, S. B. (2017). Synthesis and Structural Characterization of a CHA-type AlPO4 Molecular Sieve with Penta-Coordinated Framework Aluminum Atoms. Inorganic Chemistry, 56(14), 8504-8512. doi:10.1021/acs.inorgchem.7b01194Dorset, D. L., Strohmaier, K. G., Kliewer, C. E., Corma, A., Díaz-Cabañas, M. J., Rey, F., & Gilmore, C. J. (2008). Crystal Structure of ITQ-26, a 3D Framework with Extra-Large Pores. Chemistry of Materials, 20(16), 5325-5331. doi:10.1021/cm801126tDorset, D. L., Kennedy, G. J., Strohmaier, K. G., Diaz-Cabañas, M. J., Rey, F., & Corma, A. (2006). P-Derived Organic Cations as Structure-Directing Agents:  Synthesis of a High-Silica Zeolite (ITQ-27) with a Two-Dimensional 12-Ring Channel System. Journal of the American Chemical Society, 128(27), 8862-8867. doi:10.1021/ja061206oJo, D., Ryu, T., Park, G. T., Kim, P. S., Kim, C. H., Nam, I.-S., & Hong, S. B. (2016). Synthesis of High-Silica LTA and UFI Zeolites and NH3–SCR Performance of Their Copper-Exchanged Form. ACS Catalysis, 6(4), 2443-2447. doi:10.1021/acscatal.6b00489Miller, M. A., Moscoso, J. G., Koster, S. C., Gatter, M. G., & Lewis, G. J. (2007). Synthesis and characterization of the 12-ring zeolites UZM-4 (BPH) and UZM-22 (MEI) via the charge density mismatch approach in the Choline-Li2O-SrO-Al2O3-SiO2 system. Studies in Surface Science and Catalysis, 347-354. doi:10.1016/s0167-2991(07)80859-7Simancas, R., Jordá, J. L., Rey, F., Corma, A., Cantín, A., Peral, I., & Popescu, C. (2014). A New Microporous Zeolitic Silicoborate (ITQ-52) with Interconnected Small and Medium Pores. Journal of the American Chemical Society, 136(9), 3342-3345. doi:10.1021/ja411915cSimancas, R., Dari, D., Velamazan, N., Navarro, M. T., Cantin, A., Jorda, J. L., … Rey, F. (2010). Modular Organic Structure-Directing Agents for the Synthesis of Zeolites. Science, 330(6008), 1219-1222. doi:10.1126/science.1196240Martinez-Franco, R., Moliner, M., Yun, Y., Sun, J., Wan, W., Zou, X., & Corma, A. (2013). Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents. Proceedings of the National Academy of Sciences, 110(10), 3749-3754. doi:10.1073/pnas.1220733110Choi, M., Na, K., Kim, J., Sakamoto, Y., Terasaki, O., & Ryoo, R. (2009). Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 461(7261), 246-249. doi:10.1038/nature08288Zones, S. I., & Davis, M. E. (1996). Zeolite materials: recent discoveries and future prospects. Current Opinion in Solid State and Materials Science, 1(1), 107-117. doi:10.1016/s1359-0286(96)80018-0Bellussi, G., Carati, A., & Millini, R. (2010). Industrial Potential of Zeolites. Zeolites and Catalysis, 449-491. doi:10.1002/9783527630295.ch16Zones, S. I. (2011). Translating new materials discoveries in zeolite research to commercial manufacture. Microporous and Mesoporous Materials, 144(1-3), 1-8. doi:10.1016/j.micromeso.2011.03.039Olsbye, U., Svelle, S., Bjørgen, M., Beato, P., Janssens, T. V. W., Joensen, F., … Lillerud, K. P. (2012). Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity. Angewandte Chemie International Edition, 51(24), 5810-5831. doi:10.1002/anie.201103657Korhonen, S. T., Fickel, D. W., Lobo, R. F., Weckhuysen, B. M., & Beale, A. M. (2011). Isolated Cu2+ions: active sites for selective catalytic reduction of NO. Chem. Commun., 47(2), 800-802. doi:10.1039/c0cc04218hMoliner, M., Franch, C., Palomares, E., Grill, M., & Corma, A. (2012). Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chemical Communications, 48(66), 8264. doi:10.1039/c2cc33992gBereciartua, P. J., Cantín, Á., Corma, A., Jordá, J. L., Palomino, M., Rey, F., … Casty, G. L. (2017). Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science, 358(6366), 1068-1071. doi:10.1126/science.aao0092Dodin, M., Paillaud, J.-L., Lorgouilloux, Y., Caullet, P., Elkaïm, E., & Bats, N. (2010). A Zeolitic Material with a Three-Dimensional Pore System Formed by Straight 12- and 10-Ring Channels Synthesized with an Imidazolium Derivative as Structure-Directing Agent. Journal of the American Chemical Society, 132(30), 10221-10223. doi:10.1021/ja103648kPaillaud, J.-L. (2004). Extra-Large-Pore Zeolites with Two-Dimensional Channels Formed by 14 and 12 Rings. Science, 304(5673), 990-992. doi:10.1126/science.1098242Lorgouilloux, Y., Dodin, M., Paillaud, J.-L., Caullet, P., Michelin, L., Josien, L., … Bats, N. (2009). IM-16: A new microporous germanosilicate with a novel framework topology containing d4r and mtw composite building units. Journal of Solid State Chemistry, 182(3), 622-629. doi:10.1016/j.jssc.2008.12.002Earl, D. J., Burton, A. W., Rea, T., Ong, K., Deem, M. W., Hwang, S.-J., & Zones, S. I. (2008). Synthesis and Monte Carlo Structure Determination of SSZ-77: A New Zeolite Topology. The Journal of Physical Chemistry C, 112(24), 9099-9105. doi:10.1021/jp7116856Tang, L., Shi, L., Bonneau, C., Sun, J., Yue, H., Ojuva, A., … Zou, X. (2008). A zeolite family with chiral and achiral structures built from the same building layer. Nature Materials, 7(5), 381-385. doi:10.1038/nmat2169Corma, A., Navarro, M. T., Rey, F., Rius, J., & Valencia, S. (2001). Pure Polymorph C of Zeolite Beta Synthesized by Using Framework Isomorphous Substitution as a Structure-Directing Mechanism. Angewandte Chemie International Edition, 40(12), 2277-2280. doi:10.1002/1521-3773(20010618)40:123.0.co;2-oYun, Y., Hernández, M., Wan, W., Zou, X., Jordá, J. L., Cantín, A., … Corma, A. (2015). The first zeolite with a tri-directional extra-large 14-ring pore system derived using a phosphonium-based organic molecule. Chemical Communications, 51(36), 7602-7605. doi:10.1039/c4cc10317cJiang, J., Yun, Y., Zou, X., Jorda, J. L., & Corma, A. (2015). ITQ-54: a multi-dimensional extra-large pore zeolite with 20 × 14 × 12-ring channels. Chemical Science, 6(1), 480-485. doi:10.1039/c4sc02577fHernández-Rodríguez, M., Jordá, J. L., Rey, F., & Corma, A. (2012). Synthesis and Structure Determination of a New Microporous Zeolite with Large Cavities Connected by Small Pores. Journal of the American Chemical Society, 134(32), 13232-13235. doi:10.1021/ja306013kJiang, J., Jorda, J. L., Diaz-Cabanas, M. J., Yu, J., & Corma, A. (2010). The Synthesis of an Extra-Large-Pore Zeolite with Double Three-Ring Building Units and a Low Framework Density. Angewandte Chemie International Edition, 49(29), 4986-4988. doi:10.1002/anie.201001506Blasco, T., Corma, A., Díaz-Cabañas, M. J., Rey, F., Vidal-Moya, J. A., & Zicovich-Wilson, C. M. (2002). Preferential Location of Ge in the Double Four-Membered Ring Units of ITQ-7 Zeolite. The Journal of Physical Chemistry B, 106(10), 2634-2642. doi:10.1021/jp013302bMoliner, M., Willhammar, T., Wan, W., González, J., Rey, F., Jorda, J. L., … Corma, A. (2012). Synthesis Design and Structure of a Multipore Zeolite with Interconnected 12- and 10-MR Channels. Journal of the American Chemical Society, 134(14), 6473-6478. doi:10.1021/ja301082nCorma, A., Diaz-Cabanas, M. J., Jorda, J. L., Rey, F., Sastre, G., & Strohmaier, K. G. (2008). A Zeolitic Structure (ITQ-34) with Connected 9- and 10-Ring Channels Obtained with Phosphonium Cations as Structure Directing Agents. Journal of the American Chemical Society, 130(49), 16482-16483. doi:10.1021/ja806903cCorma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238Sun, J., Bonneau, C., Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Moliner, M., … Zou, X. (2009). The ITQ-37 mesoporous chiral zeolite. Nature, 458(7242), 1154-1157. doi:10.1038/nature07957Corma, A., Rey, F., Valencia, S., Jordá, J. L., & Rius, J. (2003). A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nature Materials, 2(7), 493-497. doi:10.1038/nmat921Werner, P. E., Eriksson, L., & Westdahl, M. (1985). TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries. Journal of Applied Crystallography, 18(5), 367-370. doi:10.1107/s0021889885010512Simancas, J., Simancas, R., Bereciartua, P. J., Jorda, J. L., Rey, F., Corma, A., … Mugnaioli, E. (2016). Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58. Journal of the American Chemical Society, 138(32), 10116-10119. doi:10.1021/jacs.6b06394Kolb, U., Mugnaioli, E., & Gorelik, T. E. (2011). Automated electron diffraction tomography - a new tool for nano crystal structure analysis. Crystal Research and Technology, 46(6), 542-554. doi:10.1002/crat.201100036Grosse-Kunstleve, R. W., McCusker, L. B., & Baerlocher, C. (1999). Zeolite structure determination from powder diffraction data: applications of theFOCUSmethod. Journal of Applied Crystallography, 32(3), 536-542. doi:10.1107/s0021889899003453R. Bialek , KRIBER. Crystallographic computation program , ETH Zurich Institut fur Kristallographie , Zurich, Switzerland , 1991Ch. Baerlocher , A.Hepp and W. M.Meier , DLS-76. Distance least squares refinement program , ETH Zurich Institut fur Kristallographie , Zurich, Switzerland , 1977Fauth, F., Peral, I., Popescu, C., & Knapp, M. (2013). The new Material Science Powder Diffraction beamline at ALBA Synchrotron. Powder Diffraction, 28(S2), S360-S370. doi:10.1017/s0885715613000900Peral, I., McKinlay, J., Knapp, M., & Ferrer, S. (2011). Design and construction of multicrystal analyser detectors using Rowland circles: application to MAD26 at ALBA. Journal of Synchrotron Radiation, 18(6), 842-850. doi:10.1107/s090904951103152

    Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)

    Get PDF
    Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters. Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs). Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001). Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio

    Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene

    Full text link
    [EN] The discovery of new materials for separating ethylene from ethane by adsorption, instead of using cryogenic distillation, is a key milestone for molecular separations because of the multiple and widely extended uses of these molecules in industry. This technique has the potential to provide tremendous energy savings when compared with the currently used cryogenic distillation process for ethylene produced through steam cracking. Here we describe the synthesis and structural determination of a flexible pure silica zeolite (ITQ-55). This material can kinetically separate ethylene from ethane with an unprecedented selectivity of ~100, owing to its distinctive pore topology with large heart-shaped cages and framework flexibility. Control of such properties extends the boundaries for applicability of zeolites to challenging separations.We gratefully acknowledge financial support from ExxonMobil Research and Engineering Company, Instituto de Tecnologia Quimica researchers also thank the European Research Council (grant ERC-2014-AdG-671093 "MATching zeolite SYNthiesis with CATalytic activity") and the Spanish government (grants MAT2015-71842-P MINECO/FEDER and Severe Ochea SEV-2012-0267 and SEV-2016-0683) for economic supportBereciartua-Pérez, PJ.; Cantin Sanz, A.; Corma Canós, A.; Jorda Moret, JL.; Palomino Roca, M.; Rey Garcia, F.; Valencia Valencia, S.... (2017). Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science. 358(6366):1068-1071. https://doi.org/10.1126/science.aao0092S106810713586366L. Kniel, O. Winter, K. Stork, in Ethylene, Keystone to the Petrochemical Industry (Chemical Industries) (Taylor & Francis, 1980), pp. 14–35.H. A. Wittcoff, B. G. Reuben, J. S. Plotkin, “Chemicals and polymers from ethylene” in Industrial Organic Chemicals (Wiley, ed. 2, 2005), pp. 100–166.Corma, A., Corresa, E., Mathieu, Y., Sauvanaud, L., Al-Bogami, S., Al-Ghrami, M. S., & Bourane, A. (2017). Crude oil to chemicals: light olefins from crude oil. Catalysis Science & Technology, 7(1), 12-46. doi:10.1039/c6cy01886fSadrameli, S. M. (2015). Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review I: Thermal cracking review. Fuel, 140, 102-115. doi:10.1016/j.fuel.2014.09.034Anson, A., Wang, Y., Lin, C. C. H., Kuznicki, T. M., & Kuznicki, S. M. (2008). Adsorption of ethane and ethylene on modified ETS-10. Chemical Engineering Science, 63(16), 4171-4175. doi:10.1016/j.ces.2008.05.038Sholl, D. S., & Lively, R. P. (2016). Seven chemical separations to change the world. Nature, 532(7600), 435-437. doi:10.1038/532435aMartins, V. F. D., Ribeiro, A. M., Santos, J. C., Loureiro, J. M., Gleichmann, K., Ferreira, A., & Rodrigues, A. E. (2016). Development of gas-phase SMB technology for light olefin/paraffin separations. AIChE Journal, 62(7), 2490-2500. doi:10.1002/aic.15238Narin, G., Martins, V. F. D., Campo, M., Ribeiro, A. M., Ferreira, A., Santos, J. C., … Rodrigues, A. E. (2014). Light olefins/paraffins separation with 13X zeolite binderless beads. Separation and Purification Technology, 133, 452-475. doi:10.1016/j.seppur.2014.06.060National Research Council, Separation Technologies for the Industries of the Future (National Materials Advisory Board, Commission on Engineering and Technical Systems, National Research Council, Publication NMAB-487-3, National Academy Press, 1998).G. E. Keller, “High-priority separation materials R&D needs in the chemicals and petrochemicals industries” in Materials for Separation Technologies: Energy and Emission Reduction Opportunities (Oak Ridge National Laboratory and BCS, 2005), appendix D, pp. 87–97.Safarik, D. J., & Eldridge, R. B. (1998). Olefin/Paraffin Separations by Reactive Absorption:  A Review. Industrial & Engineering Chemistry Research, 37(7), 2571-2581. doi:10.1021/ie970897hRege, S. U., Padin, J., & Yang, R. T. (1998). Olefin/paraffin separations by adsorption: π-Complexation vs. kinetic separation. AIChE Journal, 44(4), 799-809. doi:10.1002/aic.690440405G. E. Keller, A. E. Marcinkowsky, S. K. Verma, K. D. Williamson, “Olefin recovery and purification via silver complexing” in Separation and Purification Technology, N. N. Li, J. M. Calo, Eds. (Marcel Dekker, 1992), pp. 59–83.Yang, R. T., & Kikkinides, E. S. (1995). New sorbents for olefin/paraffin separations by adsorption viaπ -complexation. AIChE Journal, 41(3), 509-517. doi:10.1002/aic.690410309Aguado, S., Bergeret, G., Daniel, C., & Farrusseng, D. (2012). Absolute Molecular Sieve Separation of Ethylene/Ethane Mixtures with Silver Zeolite A. Journal of the American Chemical Society, 134(36), 14635-14637. doi:10.1021/ja305663kVan Miltenburg, A., Zhu, W., Kapteijn, F., & Moulijn, J. A. (2006). Adsorptive Separation of Light Olefin/Paraffin Mixtures. Chemical Engineering Research and Design, 84(5), 350-354. doi:10.1205/cherd05021Min Wang, Q., Shen, D., Bülow, M., Ling Lau, M., Deng, S., Fitch, F. R., … Semanscin, J. (2002). Metallo-organic molecular sieve for gas separation and purification. Microporous and Mesoporous Materials, 55(2), 217-230. doi:10.1016/s1387-1811(02)00405-5Martins, V. F. D., Ribeiro, A. M., Ferreira, A., Lee, U.-H., Hwang, Y. K., Chang, J.-S., … Rodrigues, A. E. (2015). Ethane/ethylene separation on a copper benzene-1,3,5-tricarboxylate MOF. Separation and Purification Technology, 149, 445-456. doi:10.1016/j.seppur.2015.06.012Bloch, E. D., Queen, W. L., Krishna, R., Zadrozny, J. M., Brown, C. M., & Long, J. R. (2012). Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites. Science, 335(6076), 1606-1610. doi:10.1126/science.1217544Böhme, U., Barth, B., Paula, C., Kuhnt, A., Schwieger, W., Mundstock, A., … Hartmann, M. (2013). Ethene/Ethane and Propene/Propane Separation via the Olefin and Paraffin Selective Metal–Organic Framework Adsorbents CPO-27 and ZIF-8. Langmuir, 29(27), 8592-8600. doi:10.1021/la401471gMaghsoudi, H. (2016). Comparative study of adsorbents performance in ethylene/ethane separation. Adsorption, 22(7), 985-992. doi:10.1007/s10450-016-9805-xMofarahi, M., & Salehi, S. M. (2012). Pure and binary adsorption isotherms of ethylene and ethane on zeolite 5A. Adsorption, 19(1), 101-110. doi:10.1007/s10450-012-9423-1Shi, M., Avila, A. M., Yang, F., Kuznicki, T. M., & Kuznicki, S. M. (2011). High pressure adsorptive separation of ethylene and ethane on Na-ETS-10. Chemical Engineering Science, 66(12), 2817-2822. doi:10.1016/j.ces.2011.03.046Gücüyener, C., van den Bergh, J., Gascon, J., & Kapteijn, F. (2010). Ethane/Ethene Separation Turned on Its Head: Selective Ethane Adsorption on the Metal−Organic Framework ZIF-7 through a Gate-Opening Mechanism. Journal of the American Chemical Society, 132(50), 17704-17706. doi:10.1021/ja1089765Hartmann, M., Böhme, U., Hovestadt, M., & Paula, C. (2015). Adsorptive Separation of Olefin/Paraffin Mixtures with ZIF-4. Langmuir, 31(45), 12382-12389. doi:10.1021/acs.langmuir.5b02907Olson, D. H., Yang, X., & Camblor, M. A. (2004). ITQ-12:  A Zeolite Having Temperature Dependent Adsorption Selectivity and Potential for Propene Separation. The Journal of Physical Chemistry B, 108(30), 11044-11048. doi:10.1021/jp040216dPalomino, M., Cantín, A., Corma, A., Leiva, S., Rey, F., & Valencia, S. (2007). Pure silica ITQ-32 zeolite allows separation of linear olefins from paraffins. Chem. Commun., (12), 1233-1235. doi:10.1039/b700358gZhu, W., Kapteijn, F., Moulijn, J. A., den Exter, M. C., & Jansen, J. C. (2000). Shape Selectivity in Adsorption on the All-Silica DD3R. Langmuir, 16(7), 3322-3329. doi:10.1021/la9914007Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909Barrett, P. A., Boix, T., Puche, M., Olson, D. H., Jordan, E., Koller, H., & Camblor, M. A. (2003). ITQ-12: a new microporous silica polymorph potentially useful for light hydrocarbon separationsElectronic supplementary information (ESI) available: details of the structure solution, Rietveld refinements in space groups C2/m and Cm and energy minimisation calculations in C2/m, Cm and C2. See http://www.rsc.org/suppdata/cc/b3/b306440a/. Chemical Communications, (17), 2114. doi:10.1039/b306440aRuthven, D. M., & Reyes, S. C. (2007). Adsorptive separation of light olefins from paraffins. Microporous and Mesoporous Materials, 104(1-3), 59-66. doi:10.1016/j.micromeso.2007.01.005A. Corma Canos, F. Rey Garcia, S. Valencia Valencia, A. Cantin Sanz, M. Palomino Roca, Patent ES2554648 (B1) (2015).Vidal-Moya, J. A., Blasco, T., Rey, F., Corma, A., & Puche, M. (2003). Distribution of Fluorine and Germanium in a New Zeolite Structure ITQ-13 Studied by19F Nuclear Magnetic Resonance. Chemistry of Materials, 15(21), 3961-3963. doi:10.1021/cm034515bThommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. doi:10.1515/pac-2014-1117Jiang, J., Jorda, J. L., Yu, J., Baumes, L. A., Mugnaioli, E., Diaz-Cabanas, M. J., … Corma, A. (2011). Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43. Science, 333(6046), 1131-1134. doi:10.1126/science.1208652Yun, Y., Zou, X., Hovmöller, S., & Wan, W. (2015). Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders. IUCrJ, 2(2), 267-282. doi:10.1107/s2052252514028188Gemmi, M., La Placa, M. G. I., Galanis, A. S., Rauch, E. F., & Nicolopoulos, S. (2015). Fast electron diffraction tomography. Journal of Applied Crystallography, 48(3), 718-727. doi:10.1107/s1600576715004604Simancas, J., Simancas, R., Bereciartua, P. J., Jorda, J. L., Rey, F., Corma, A., … Mugnaioli, E. (2016). Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58. Journal of the American Chemical Society, 138(32), 10116-10119. doi:10.1021/jacs.6b06394Awati, R. V., Ravikovitch, P. I., & Sholl, D. S. (2013). Efficient and Accurate Methods for Characterizing Effects of Framework Flexibility on Molecular Diffusion in Zeolites: CH4 Diffusion in Eight Member Ring Zeolites. The Journal of Physical Chemistry C, 117(26), 13462-13473. doi:10.1021/jp402959tBoulfelfel, S. E., Ravikovitch, P. I., & Sholl, D. S. (2015). Modeling Diffusion of Linear Hydrocarbons in Silica Zeolite LTA Using Transition Path Sampling. The Journal of Physical Chemistry C, 119(27), 15643-15653. doi:10.1021/acs.jpcc.5b01633Gutiérrez-Sevillano, J. J., Calero, S., Hamad, S., Grau-Crespo, R., Rey, F., Valencia, S., … Ruiz-Salvador, A. R. (2016). Critical Role of Dynamic Flexibility in Ge-Containing Zeolites: Impact on Diffusion. Chemistry - A European Journal, 22(29), 10036-10043. doi:10.1002/chem.201600983J. Karger, D. M. Ruthven, D. N. Theodorou, Diffusion in Nanoporous Materials (Wiley, 2012).Zhang, C., Lively, R. P., Zhang, K., Johnson, J. R., Karvan, O., & Koros, W. J. (2012). Unexpected Molecular Sieving Properties of Zeolitic Imidazolate Framework-8. The Journal of Physical Chemistry Letters, 3(16), 2130-2134. doi:10.1021/jz300855aHaldoupis, E., Watanabe, T., Nair, S., & Sholl, D. S. (2012). Quantifying Large Effects of Framework Flexibility on Diffusion in MOFs: CH4and CO2in ZIF-8. ChemPhysChem, 13(15), 3449-3452. doi:10.1002/cphc.201200529Verploegh, R. J., Nair, S., & Sholl, D. S. (2015). Temperature and Loading-Dependent Diffusion of Light Hydrocarbons in ZIF-8 as Predicted Through Fully Flexible Molecular Simulations. Journal of the American Chemical Society, 137(50), 15760-15771. doi:10.1021/jacs.5b08746Vidoni, A., & Ruthven, D. M. (2012). Diffusion of C2H6 and C2H4 in DDR Zeolite. Industrial & Engineering Chemistry Research, 51(3), 1383-1390. doi:10.1021/ie202449qRungta, M., Xu, L., & Koros, W. J. (2012). Carbon molecular sieve dense film membranes derived from Matrimid® for ethylene/ethane separation. Carbon, 50(4), 1488-1502. doi:10.1016/j.carbon.2011.11.019Zheng, Y., Hu, N., Wang, H., Bu, N., Zhang, F., & Zhou, R. (2015). Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation. Journal of Membrane Science, 475, 303-310. doi:10.1016/j.memsci.2014.10.048Bachman, J. E., Smith, Z. P., Li, T., Xu, T., & Long, J. R. (2016). Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals. Nature Materials, 15(8), 845-849. doi:10.1038/nmat4621Hedlund, J., Sterte, J., Anthonis, M., Bons, A.-J., Carstensen, B., Corcoran, N., … Peters, J. (2002). High-flux MFI membranes. Microporous and Mesoporous Materials, 52(3), 179-189. doi:10.1016/s1387-1811(02)00316-5Kolb, U., Mugnaioli, E., & Gorelik, T. E. (2011). Automated electron diffraction tomography - a new tool for nano crystal structure analysis. Crystal Research and Technology, 46(6), 542-554. doi:10.1002/crat.201100036Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., … Polidori, G. (2015). Crystal structure determination and refinementviaSIR2014. Journal of Applied Crystallography, 48(1), 306-309. doi:10.1107/s1600576715001132Petříček, V., Dušek, M., & Palatinus, L. (2014). Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie - Crystalline Materials, 229(5). doi:10.1515/zkri-2014-1737Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift für Kristallographie - Crystalline Materials, 220(5/6). doi:10.1524/zkri.220.5.567.65075Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495McNellis, E. R., Meyer, J., & Reuter, K. (2009). Azobenzene at coinage metal surfaces: Role of dispersive van der Waals interactions. Physical Review B, 80(20). doi:10.1103/physrevb.80.205414Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406Tuckerman, M. E., Liu, Y., Ciccotti, G., & Martyna, G. J. (2001). Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems. The Journal of Chemical Physics, 115(4), 1678-1702. doi:10.1063/1.1378321Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182-7190. doi:10.1063/1.328693Niklasson, A. M. N., Steneteg, P., & Bock, N. (2011). Extended Lagrangian free energy molecular dynamics. The Journal of Chemical Physics, 135(16), 164111. doi:10.1063/1.3656977Boulfelfel, S. E., Ravikovitch, P. I., Koziol, L., & Sholl, D. S. (2016). Improved Hill–Sauer Force Field for Accurate Description of Pores in 8-Ring Zeolites. The Journal of Physical Chemistry C, 120(26), 14140-14148. doi:10.1021/acs.jpcc.6b03674Talu, O., & Myers, A. L. (2001). Reference potentials for adsorption of helium, argon, methane, and krypton in high-silica zeolites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187-188, 83-93. doi:10.1016/s0927-7757(01)00628-8Wick, C. D., Martin, M. G., & Siepmann, J. I. (2000). Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes. The Journal of Physical Chemistry B, 104(33), 8008-8016. doi:10.1021/jp001044xBinder, T., Chmelik, C., Kärger, J., Martinez-Joaristi, A., Gascon, J., Kapteijn, F., & Ruthven, D. (2013). A diffusion study of small hydrocarbons in DDR zeolites by micro-imaging. Microporous and Mesoporous Materials, 180, 219-228. doi:10.1016/j.micromeso.2013.06.038A. van Miltenburg, “Adsorptive separation of light olefin/paraffin mixtures: Dispersion of CuCl in faujasite zeolites,” thesis, Technische Universiteit Delft (2007).Olson, D. H., Camblor, M. A., Villaescusa, L. A., & Kuehl, G. H. (2004). Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58. Microporous and Mesoporous Materials, 67(1), 27-33. doi:10.1016/j.micromeso.2003.09.02

    Contemporary use of cefazolin for MSSA infective endocarditis: analysis of a national prospective cohort

    Get PDF
    Objectives: This study aimed to assess the real use of cefazolin for methicillin-susceptible Staphylococcus aureus (MSSA) infective endocarditis (IE) in the Spanish National Endocarditis Database (GAMES) and to compare it with antistaphylococcal penicillin (ASP). Methods: Prospective cohort study with retrospective analysis of a cohort of MSSA IE treated with cloxacillin and/or cefazolin. Outcomes assessed were relapse; intra-hospital, overall, and endocarditis-related mortality; and adverse events. Risk of renal toxicity with each treatment was evaluated separately. Results: We included 631 IE episodes caused by MSSA treated with cloxacillin and/or cefazolin. Antibiotic treatment was cloxacillin, cefazolin, or both in 537 (85%), 57 (9%), and 37 (6%) episodes, respectively. Patients treated with cefazolin had significantly higher rates of comorbidities (median Charlson Index 7, P <0.01) and previous renal failure (57.9%, P <0.01). Patients treated with cloxacillin presented higher rates of septic shock (25%, P = 0.033) and new-onset or worsening renal failure (47.3%, P = 0.024) with significantly higher rates of in-hospital mortality (38.5%, P = 0.017). One-year IE-related mortality and rate of relapses were similar between treatment groups. None of the treatments were identified as risk or protective factors. Conclusion: Our results suggest that cefazolin is a valuable option for the treatment of MSSA IE, without differences in 1-year mortality or relapses compared with cloxacillin, and might be considered equally effective

    Mural Endocarditis: The GAMES Registry Series and Review of the Literature

    No full text

    Role of age and comorbidities in mortality of patients with infective endocarditis.

    No full text
    The aim of this study was to analyse the characteristics of patients with IE in three groups of age and to assess the ability of age and the Charlson Comorbidity Index (CCI) to predict mortality. Prospective cohort study of all patients with IE included in the GAMES Spanish database between 2008 and 2015.Patients were stratified into three age groups: A total of 3120 patients with IE (1327  There were no differences in the clinical presentation of IE between the groups. Age ≥ 80 years, high comorbidity (measured by CCI),and non-performance of surgery were independent predictors of mortality in patients with IE.CCI could help to identify those patients with IE and surgical indication who present a lower risk of in-hospital and 1-year mortality after surgery, especially in th

    Prosthetic Valve Candida spp. Endocarditis: New Insights Into Long-term Prognosis—The ESCAPE Study

    Get PDF
    International audienceBackground: Prosthetic valve endocarditis caused by Candida spp. (PVE-C) is rare and devastating, with international guidelines based on expert recommendations supporting the combination of surgery and subsequent azole treatment.Methods: We retrospectively analyzed PVE-C cases collected in Spain and France between 2001 and 2015, with a focus on management and outcome.Results: Forty-six cases were followed up for a median of 9 months. Twenty-two patients (48%) had a history of endocarditis, 30 cases (65%) were nosocomial or healthcare related, and 9 (20%) patients were intravenous drug users. "Induction" therapy consisted mainly of liposomal amphotericin B (L-amB)-based (n = 21) or echinocandin-based therapy (n = 13). Overall, 19 patients (41%) were operated on. Patients <66 years old and without cardiac failure were more likely to undergo cardiac surgery (adjusted odds ratios [aORs], 6.80 [95% confidence interval [CI], 1.59-29.13] and 10.92 [1.15-104.06], respectively). Surgery was not associated with better survival rates at 6 months. Patients who received L-amB alone had a better 6-month survival rate than those who received an echinocandin alone (aOR, 13.52; 95% CI, 1.03-838.10). "Maintenance" fluconazole therapy, prescribed in 21 patients for a median duration of 13 months (range, 2-84 months), led to minor adverse effects.Conclusion: L-amB induction treatment improves survival in patients with PVE-C. Medical treatment followed by long-term maintenance fluconazole may be the best treatment option for frail patients

    Infective Endocarditis in Patients With Bicuspid Aortic Valve or Mitral Valve Prolapse

    No full text
    corecore