38 research outputs found

    Brain connectivity changes in autosomal recessive Parkinson Disease: a model for the sporadic form

    Get PDF
    Biallelic genetic mutations in the Park2 and PINK1 genes are frequent causes of autosomal recessive PD. Carriers of single heterozygous mutations may manifest subtle signs of disease, thus providing a unique model of preclinical PD. One emerging hypothesis suggests that non-motor symptom of PD, such as cognitive impairment may be due to a distributed functional disruption of various neuronal circuits. Using resting-state functional MRI (RS-fMRI), we tested the hypothesis that abnormal connectivity within and between brain networks may account for the patients' cognitive status. Eight homozygous and 12 heterozygous carriers of either PINK1 or Park2 mutation and 22 healthy controls underwent RS-fMRI and cognitive assessment. RS-fMRI data underwent independent component analysis to identify five networks of interest: default-mode network, salience network, executive network, right and left fronto-parietal networks. Functional connectivity within and between each network was assessed and compared between groups. All mutation carriers were cognitively impaired, with the homozygous group reporting a more prominent impairment in visuo-spatial working memory. Changes in functional connectivity were evident within all networks between homozygous carriers and controls. Also heterozygotes reported areas of reduced connectivity when compared to controls within two networks. Additionally, increased inter-network connectivity was observed in both groups of mutation carriers, which correlated with their spatial working memory performance, and could thus be interpreted as compensatory. We conclude that both homozygous and heterozygous carriers exhibit pathophysiological changes unveiled by RS-fMRI, which can account for the presence/severity of cognitive symptom

    Nuclear Progesterone Receptors Are Up-Regulated by Estrogens in Neurons and Radial Glial Progenitors in the Brain of Zebrafish

    Get PDF
    In rodents, there is increasing evidence that nuclear progesterone receptors are transiently expressed in many regions of the developing brain, notably outside the hypothalamus. This suggests that progesterone and/or its metabolites could be involved in functions not related to reproduction, particularly in neurodevelopment. In this context, the adult fish brain is of particular interest, as it exhibits constant growth and high neurogenic activity that is supported by radial glia progenitors. However, although synthesis of neuroprogestagens has been documented recently in the brain of zebrafish, information on the presence of progesterone receptors is very limited. In zebrafish, a single nuclear progesterone receptor (pgr) has been cloned and characterized. Here, we demonstrate that this pgr is widely distributed in all regions of the zebrafish brain. Interestingly, we show that Pgr is strongly expressed in radial glial cells and more weakly in neurons. Finally, we present evidence, based on quantitative PCR and immunohistochemistry, that nuclear progesterone receptor mRNA and proteins are upregulated by estrogens in the brain of adult zebrafish. These data document for the first time the finding that radial glial cells are preferential targets for peripheral progestagens and/or neuroprogestagens. Given the crucial roles of radial glial cells in adult neurogenesis, the potential effects of progestagens on their activity and the fate of daughter cells require thorough investigation

    Cognitive decline in Huntington's disease expansion gene carriers

    Get PDF
    BACKGROUND: In Huntington's Disease (HD) cognitive decline can occur before unequivocal motor signs become apparent. As cognitive decline often starts early in the course of the disease and has a progressive nature over time, cognition can be regarded as a key target for symptomatic treatment. The specific progressive profile of cognitive decline over time is unknown. OBJECTIVE: The aim of this study is to quantify the progression of cognitive decline across all HD stages, from pre-motormanifest to advanced HD, and to investigate if CAG length mediates cognitive decline. METHODS: In the European REGISTRY study 2669 HD expansion gene carriers underwent annual cognitive assessment. General linear mixed models were used to model the cognitive decline for each cognitive task across all disease stages. Additionally, a model was developed to evaluate the cognitive decline based on CAG length and age rather than disease stage. RESULTS: There was significant cognitive decline on all administered tasks throughout pre-motormanifest (close to estimated disease onset) participants and the subsequent motormanifest participants from stage 1 to stage 4. Performance on the Stroop Word and Stroop Color tests additionally declined significantly across the two pre-motormanifest groups: far and close to estimated disease onset. The evaluation of cognition performance in relation to CAG length and age revealed a more rapid cognitive decline in participants with longer CAG length than participants with shorter CAG length over time. CONCLUSION: Cognitive performance already shows decline in pre-motormanifest HD gene expansion carriers and gradually worsens to late stage HD. HD gene expansion carriers with certain CAG length have their own cognitive profile, i.e., longer CAG length is associated with more rapid decline

    The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients

    Get PDF
    The cause of Huntington disease (HD) is a polyglutamine repeat expansion of more than 36 units in the huntingtin protein, which is inversely correlated with the age at onset of the disease. However, additional genetic factors are believed to modify the course and the age at onset of HD. Recently, we identified the V471A polymorphism in the autophagy-related gene ATG7, a key component of the autophagy pathway that plays an important role in HD pathogenesis, to be associated with the age at onset in a large group of European Huntington disease patients. To confirm this association in a second independent patient cohort, we analysed the ATG7 V471A polymorphism in additional 1,464 European HD patients of the “REGISTRY” cohort from the European Huntington Disease Network (EHDN). In the entire REGISTRY cohort we could not confirm a modifying effect of the ATG7 V471A polymorphism. However, analysing a modifying effect of ATG7 in these REGISTRY patients and in patients of our previous HD cohort according to their ethnic origin, we identified a significant effect of the ATG7 V471A polymorphism on the HD age at onset only in the Italian population (327 patients). In these Italian patients, the polymorphism is associated with a 6-years earlier disease onset and thus seems to have an aggravating effect. We could specify the role of ATG7 as a genetic modifier for HD particularly in the Italian population. This result affirms the modifying influence of the autophagic pathway on the course of HD, but also suggests population-specific modifying mechanisms in HD pathogenesis

    Cisplatin, methotrexate, and 5-fluorouracil combination chemotherapy for advanced ovarian cancer.

    No full text

    Association of depressive symptoms with circadian blood pressure alterations in Parkinson's disease

    No full text
    To assess whether among patients with Parkinson's disease (PD) depression, a common non-motor symptom associated with reduced survival, is associated with cardiovascular dysautonomia. We enrolled 125 subjects with PD consecutively admitted to a geriatric day hospital. All participants underwent comprehensive evaluation, fasting blood sampling, and 24-h ambulatory blood pressure monitoring. The percent reduction in nocturnal blood pressure (dipping) was calculated. Depressive symptoms were assessed through the 15-item Geriatric Depression Scale (GDS); a score  655 identified moderate to severe symptoms. Among participants (mean age 72.7 \ub1 7.8 years, 32 % women) 61 subjects (49 %) presented with a GDS score  65 5. When compared with other participants, subjects with a GDS score  65 5 had reduced adjusted levels of percent systolic (-2.6 \ub1 2.7 vs. 4.7 \ub1 2.5; p = 0.003), diastolic (0.6 \ub1 2.8 vs. 7.4 \ub1 2.6; p = 0.007), and mean blood pressure dipping (-0.7 \ub1 2.6 vs. 6.8 \ub1 2.5; p = 0.002). In separate logistic regression models, depressive symptoms were associated with reduced systolic (OR 0.94; 95 % CI 0.89; 0.98), diastolic (OR 0.94; 95 % CI 0.90; 0.99), and mean blood pressure dipping (OR 0.93; 95 % CI 0.89; 0.98), after adjusting for potential confounders. Depressive symptoms are prevalent, and independently associated with cardiovascular dysautonomia among patients with Parkinson's disease. This might explain the remarkable incidence of sudden death, as well as the association of depressive symptoms with reduced survival reported in these patients. The finding of depressive symptoms in subjects with Parkinson's disease should therefore prompt assessment of cardiovascular autonomic function

    Mitochondrial-Derived Vesicles as Candidate Biomarkers in Parkinson's Disease: Rationale, Design and Methods of the EXosomes in PArkiNson Disease (EXPAND) Study

    No full text
    The progressive loss of dopaminergic neurons in the nigro-striatal system is a major trait of Parkinson's disease (PD), manifesting clinically as motor and non-motor symptoms. Mitochondrial dysfunction and oxidative stress are alleged pathogenic mechanisms underlying aggregation of misfolded -synuclein that in turn triggers dopaminergic neurotoxicity. Peripheral processes, including inflammation, may precede and contribute to neurodegeneration. Whether mitochondrial dyshomeostasis in the central nervous system and systemic inflammation are linked to one another in PD is presently unclear. Extracellular vesicles (EVs) are delivery systems through which cells can communicate or unload noxious materials. EV trafficking also participates in mitochondrial quality control (MQC) by generating mitochondrial-derived vesicles to dispose damaged organelles. Disruption of MQC coupled with abnormal EV secretion may play a role in the pathogenesis of PD. Furthermore, due to its bacterial ancestry, circulating mitochondrial DNA can elicit an inflammatory response. Therefore, purification and characterisation of molecules packaged in, and secreted through, small EVs (sEVs)/exosomes in body fluids may provide meaningful insights into the association between mitochondrial dysfunction and systemic inflammation in PD. The EXosomes in PArkiNson Disease (EXPAND) study was designed to characterise the cargo of sEVs/exosomes isolated from the serum of PD patients and to identify candidate biomarkers for PD

    Mitotic spindle orientation predicts outer radial glial cell generation in human neocortex

    No full text
    The human neocortex is increased in size and complexity as compared to most other species. Neocortical expansion has recently been attributed to protracted neurogenesis by outer radial glial (oRG) cells in the outer subventricular zone (oSVZ), a region present in humans but not in rodents. The mechanisms of human oRG cell generation are unknown, but are proposed to involve division of ventricular radial glial (vRG) cells; neural stem cells present in all developing mammals. Here we show that human vRG cells produce oRG cells and seed formation of the oSVZ via horizontal divisions, which occur more frequently in humans than in rodents. We further find that oRG cell mitotic behavior is cell intrinsic, and that the basal fiber, inherited by oRG cells after vRG division, determines cleavage angle. Our results suggest that altered regulation of mitotic spindle orientation increased oRG cell numbers, and ultimately neuronal numbers, during human brain evolution
    corecore