102 research outputs found
Low genetic diversity despite multiple introductions of the invasive plant species Impatiens glandulifera in Europe
Background: Invasive species can be a major threat to native biodiversity and the number of invasive plant species is increasing across the globe. Population genetic studies of invasive species can provide key insights into their invasion history and ensuing evolution, but also for their control. Here we genetically characterise populations of Impatiens glandulifera, an invasive plant in Europe that can have a major impact on native plant communities. We compared populations from the species' native range in Kashmir, India, to those in its invaded range, along a latitudinal gradient in Europe. For comparison, the results from 39 other studies of genetic diversity in invasive species were collated.Results: Our results suggest that I. glandulifera was established in the wild in Europe at least twice, from an area outside of our Kashmir study area. Our results further revealed that the genetic diversity in invasive populations of I. glandulifera is unusually low compared to native populations, in particular when compared to other invasive species. Genetic drift rather than mutation seems to have played a role in differentiating populations in Europe. We find evidence of limitations to local gene flow after introduction to Europe, but somewhat less restrictions in the native range. I. glandulifera populations with significant inbreeding were only found in the species' native range and invasive species in general showed no increase in inbreeding upon leaving their native ranges. In Europe we detect cases of migration between distantly located populations. Human activities therefore seem to, at least partially, have facilitated not only introductions, but also further spread of I. glandulifera across Europe.Conclusions: Although multiple introductions will facilitate the retention of genetic diversity in invasive ranges, widespread invasive species can remain genetically relatively invariant also after multiple introductions. Phenotypic plasticity may therefore be an important component of the successful spread of Impatiens glandulifera across Europe
The fate of the missing spores
It is well-known that many species with small diaspores can disperse far during extended temporal scales (many years). However, studies on short temporal scales usually only cover short distances (in, e.g., bryophytes up to 15 m). By using a novel experimental design, studying the realized dispersal, we extend this range by almost two orders of magnitude. We recorded establishment of the fast-growing moss Discelium nudum on introduced suitable substrates, placed around a translocated, sporulating mother colony. Around 2,000 pots with acidic clay were placed at different distances between 5 m and 600 m, in four directions, on a raised bog, with increased pot numbers with distance. The experiment was set up in April-May and the realized dispersal (number of colonized pots) was recorded in September. Close to the mother colony (up to 10 m), the mean colonization rates (ratio of colonized pots) exceeded 50%. At distances between 10 and 50 m colonization dropped sharply, but beyond 50 m the mean colonization rates stabilized and hardly changed (1-3%). The estimated density of spores causing establishments at the further distances (2-6 spores/m2) was realistic when compared to the estimated spore output from the central colonies. Our study supports calculations from earlier studies, limited to short distances, that a majority of the spores disperse beyond the nearest vicinity of a source. The even colonization pattern at further distances raises interesting questions about under what conditions spores are transported and deposited. However, it is clear that regular establishment is likely at the km-scale for this and many other species with similar spore output and dispersal mechanism
Extreme reproduction and survival of a true cliffhanger : the endangered plant Borderea chouardii (Dioscoreaceae)
Cliff sides are extreme habitats, often sheltering a rich and unique flora. One example is the dioecious herb Borderea chouardii (Dioscoreaceae), which is a Tertiary, tropical relict, occurring only on two adjacent vertical cliffs in the world. We studied its reproductive biology, which in some aspects is extreme, especially the unusual double mutualistic role of ants as both pollinators and dispersers. We made a 2-year pollination census and four years of seed-dispersal experiments, recording flower visitors and dispersal rates. Fruit and seed set, self-sowing of seeds, seedling recruitment, and fate of seedlings from seeds sowed by different agents were scored over a period of 17 years. The ants Lasius grandis and L. cinereus were the main pollinators, whereas another ant Pheidole pallidula dispersed seeds. Thus ants functioned as double mutualists. Two thirds of all new seedlings came from self-sown seeds, and 1/3 was dispersed by ants, which gathered the seeds with their oil-rich elaiosome. Gravity played a minor role to dispersal. Both ant dispersal and self-sowing resulted in the same survival rate of seedlings. A double mutualism is a risky reproductive strategy, but B. chouardii buffers that by an unusual long-term demographic stability (some individuals exceed 300 years in lifespan) and its presence in a climatically very stable habitat, inaccessible to large herbivores. Such a combination of traits and habitat properties may explain the persistence of this relict species
Rodent population dynamics affect seedling recruitment in alpine habitats
Questions: How do rodents with cyclic population dynamics affect seedling recruitment in alpine habitats? Does disturbance fromrodents have larger implications on seedling recruitment in some plant communities than in others?
Location: Snowbeds and sheltered heaths in the low-alpine zone in areas of Børgefjell and Dovrefjell, Norway.
Methods: We recorded seedling emergence, rodent activity and cover of mosses, lichens, litter and bare ground in 270 plots in snowbeds and sheltered heaths in a rodent population peak year and in the following low-density year.
Results: Seedling recruitment was positively correlated with disturbances from lemmings and voles in both years. More seedlings emerged in the low-density year than in the year of the population peak. Snowbeds had higher seedling recruitment than the sheltered heaths, but both habitats were equally affected by disturbances fromrodents.
Conclusions: Rodent activity created gaps and increased seedling emergence in these alpine plant communities, particularly in the year after the rodent peak, both in snowbeds and sheltered heath habitats. Our study therefore suggests that regeneration patterns in alpine vegetation are tightly linked to the population cycles of lemmings and voles,which peak in density at 3- to 5-yr intervals.publishedVersionPaid Open Acces
Hiking trails shift plant species' realized climatic niches and locally increase species richness
Aim The presence and use of trails may change plant species' realized climatic niches via modified abiotic and biotic conditions including propagule transport, allowing competition-pressed alpine species to expand their rear edges towards warmer locations and lowland species to extend their leading edges towards cooler locations. We investigated whether mountain trails indeed act as corridors for colonization and shift species' realized climatic niches, resulting in higher species richness in trailsides. Location Dovrefjell and Abisko area in the Scandes mountains of Norway and Sweden. Methods We surveyed plant community composition and disturbances along 16 hiking trails in summer 2018 (Dovrefjell) and 2019 (Abisko). We linked changes in species' realized climatic niches to their climatic optimum and variation in species richness to climate, trail effects and resident plant community characteristics. Results Plant species richness was on average 24% greater in trailside than in interior vegetation plots. Proximity to trails accounted for 9% and climatic harshness for 55% of variation in species richness explained in our model. Trailsides increased in richness, especially in relatively species-poor sites and close to introduction points (each accounting for 24% of variation in our model of species gains). Shifts in rear edges and optima of realized climatic niches along trails related to species' undisturbed climatic optimum, with alpine species being more likely to move into warmer locations. While some disturbance-associated species shifted their leading edges towards colder locations, contrary to expectations this was not the case for lowland species. Overall, shifts in climatic niches resulted in more species' niches overlapping in trailsides than in the interior vegetation. Main conclusion Trails can locally increase species richness by creating opportunities for colonizing species and weaker competitors. Because of prevailing disturbance, they may even provide opportunities for persistence and downward expansion of alpine species, aiding conservation efforts
Vegetation change on mountaintops in northern Sweden: Stable vascular-plant but reordering of lichen and bryophyte communities
publishedVersio
The European Forest Plant Species List (EuForPlant): Concept and applications
Question
When evaluating forests in terms of their biodiversity, distinctiveness and naturalness, the affinity of the constituent species to forests is a crucial parameter. Here we ask to what extent are vascular plant species associated with forests, and does species’ affinity to forests vary between European regions?
Location
Temperate and boreal forest biome of Northwestern and Central Europe.
Methods
We compiled EuForPlant, a new extensive list of forest vascular plant species in 24 regions spread across 13 European countries using vegetation databases and expert knowledge. Species were region-specifically classified into four categories reflecting the degree of their affinity to forest habitats: 1.1, species of forest interiors; 1.2, species of forest edges and forest openings; 2.1, species that can be found in forest as well as open vegetation; and 2.2, species that can be found partly in forest, but mainly in open vegetation. An additional “O” category was distinguished, covering species typical for non-forest vegetation.
Results
EuForPlant comprises 1,726 species, including 1,437 herb-layer species, 159 shrubs, 107 trees, 19 lianas and 4 epiphytic parasites. Across regions, generalist forest species (with 450 and 777 species classified as 2.1 and 2.2, respectively) significantly outnumbered specialist forest species (with 250 and 137 species classified as 1.1 and 1.2, respectively). Even though the degree of shifting between the categories of forest affinity among regions was relatively low (on average, 17.5%), about one-third of the forest species (especially 1.2 and 2.2) swapped categories in at least one of the study regions.
Conclusions
The proposed list can be used widely in vegetation science and global change ecology related to forest biodiversity and community dynamics. Shifting of forest affinity among regions emphasizes the importance of a continental-scale forest plant species list with regional specificity.publishedVersio
The European Forest Plant Species List (EuForPlant): Concept and applications
Question When evaluating forests in terms of their biodiversity, distinctiveness and naturalness, the affinity of the constituent species to forests is a crucial parameter. Here we ask to what extent are vascular plant species associated with forests, and does species' affinity to forests vary between European regions? Location Temperate and boreal forest biome of Northwestern and Central Europe. Methods We compiled EuForPlant, a new extensive list of forest vascular plant species in 24 regions spread across 13 European countries using vegetation databases and expert knowledge. Species were region-specifically classified into four categories reflecting the degree of their affinity to forest habitats: 1.1, species of forest interiors; 1.2, species of forest edges and forest openings; 2.1, species that can be found in forest as well as open vegetation; and 2.2, species that can be found partly in forest, but mainly in open vegetation. An additional "O" category was distinguished, covering species typical for non-forest vegetation. Results EuForPlant comprises 1,726 species, including 1,437 herb-layer species, 159 shrubs, 107 trees, 19 lianas and 4 epiphytic parasites. Across regions, generalist forest species (with 450 and 777 species classified as 2.1 and 2.2, respectively) significantly outnumbered specialist forest species (with 250 and 137 species classified as 1.1 and 1.2, respectively). Even though the degree of shifting between the categories of forest affinity among regions was relatively low (on average, 17.5%), about one-third of the forest species (especially 1.2 and 2.2) swapped categories in at least one of the study regions. Conclusions The proposed list can be used widely in vegetation science and global change ecology related to forest biodiversity and community dynamics. Shifting of forest affinity among regions emphasizes the importance of a continental-scale forest plant species list with regional specificity
- …