34 research outputs found

    In-Fusion BioBrick assembly and re-engineering

    Get PDF
    Genetic circuits can be assembled from standardized biological parts called BioBricks. Examples of BioBricks include promoters, ribosome-binding sites, coding sequences and transcriptional terminators. Standard BioBrick assembly normally involves restriction enzyme digestion and ligation of two BioBricks at a time. The method described here is an alternative assembly strategy that allows for two or more PCR-amplified BioBricks to be quickly assembled and re-engineered using the Clontech In-Fusion PCR Cloning Kit. This method allows for a large number of parallel assemblies to be performed and is a flexible way to mix and match BioBricks. In-Fusion assembly can be semi-standardized by the use of simple primer design rules that minimize the time involved in planning assembly reactions. We describe the success rate and mutation rate of In-Fusion assembled genetic circuits using various homology and primer lengths. We also demonstrate the success and flexibility of this method with six specific examples of BioBrick assembly and re-engineering. These examples include assembly of two basic parts, part swapping, a deletion, an insertion, and three-way In-Fusion assemblies

    Persistence of HPV infection and risk of high-grade cervical intraepithelial neoplasia in a cohort of Colombian women

    Get PDF
    Little is known about the dynamics of human papillomavirus (HPV) infection and subsequent development of high-grade cervical intraepithelial neoplasia (CIN2/3), particularly in women >30 years of age. This information is needed to assess the impact of HPV vaccines and consider new screening strategies. A cohort of 1728 women 15–85 years old with normal cytology at baseline was followed every 6 months for an average of 9 years. Women with squamous intraepithelial lesions were referred for biopsy and treatment. The Kaplan–Meier method was used to estimate the median duration of infection and Cox regression analysis was undertaken to assess determinants of clearance and risk of CIN2/3 associated with HPV persistence. No difference in the likelihood of clearance was observed by HPV type or woman's age, with the exception of lower clearance for HPV16 infection in women under 30 years of age. Viral load was inversely associated with clearance. In conclusion, viral load is the main determinant of persistence, and persistence of HPV16 infections carry a higher risk of CIN2/3

    Analysis of the putative role of CR1 in Alzheimer’s disease: Genetic association, expression and function

    Get PDF
    Chronic activation of the complement system and induced inflammation are associated with neuropathology in Alzheimer's disease (AD). Recent large genome wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) in the C3b/C4b receptor (CR1 or CD35) that are associated with late onset AD. Here, anti-CR1 antibodies (Abs) directed against different epitopes of the receptor, were used to localize CR1 in brain, and relative binding affinities of the CR1 ligands, C1q and C3b, were assessed by ELISA. Most Abs tested stained red blood cells in blood vessels but showed no staining in brain parenchyma. However, two monoclonal anti-CR1 Abs labeled astrocytes in all of the cases tested, and this reactivity was preabsorbed by purified recombinant human CR1. Human brain-derived astrocyte cultures were also reactive with both mAbs. The amount of astrocyte staining varied among the samples, but no consistent difference was conferred by diagnosis or the GWAS-identified SNPs rs4844609 or rs6656401. Plasma levels of soluble CR1 did not correlate with diagnosis but a slight increase was observed with rs4844609 and rs6656401 SNP. There was also a modest but statistically significant increase in relative binding activity of C1q to CR1 with the rs4844609 SNP compared to CR1 without the SNP, and of C3b to CR1 in the CR1 genotypes containing the rs6656401 SNP (also associated with the larger isoform of CR1) regardless of clinical diagnosis. These results suggest that it is unlikely that astrocyte CR1 expression levels or C1q or C3b binding activity are the cause of the GWAS identified association of CR1 variants with AD. Further careful functional studies are needed to determine if the variant-dictated number of CR1 expressed on red blood cells contributes to the role of this receptor in the progression of AD, or if another mechanism is involved

    Anti-tumor immunotherapy via antigen delivery from a live attenuated genetically engineered Pseudomonas aeruginosa type III secretion system-based vector.

    No full text
    Immunotherapy requiring an efficient T lymphocyte response is initiated by antigen delivery to antigen-presenting cells. Several studies have assessed the efficiency of various antigen loading procedures, including microbial vectors. Here a live strain of Pseudomonas aeruginosa was engineered to translocate a recombinant antigenic protein into mammalian cells via the type III secretion system, a bacterial device translocating effector proteins into host cells. Optimization of the vector included virulence attenuation and determination of the N-terminal sequence allowing translocation of fused antigens into cells. In vitro delivery of an ovalbumin fragment by the bacterial vector into dendritic cells induced the activation of ovalbumin-specific CD8(+) T lymphocytes. Mice injected with the ovalbumin-delivering vector developed ovalbumin-specific CD8(+) T lymphocytes and were resistant to a subsequent challenge with an ovalbumin-expressing melanoma. Moreover, in a curative assay, injection of the vaccine vector 5 and 12 days after tumor implantation led to a complete cure in five of six animals. These results highlight the utility of type III secretion system-based vectors for anti-tumor immunotherapy

    Casein kinase 1ε and 1α as novel players in polycystic kidney disease and mechanistic targets for (R)-roscovitine and (S)-CR8

    No full text
    Following the discovery of (R)-roscovitine's beneficial effects in three polycystic kidney disease (PKD) mouse models, cyclin-dependent kinases (CDKs) inhibitors have been investigated as potential treatments. We have used various affinity chromatography approaches to identify the molecular targets of roscovitine and its more potent analog (S)-CR8 in human and murine polycystic kidneys. These methods revealed casein kinases 1 (CK1) as additional targets of the two drugs. CK1 epsilon expression at the mRNA and protein levels is enhanced in polycystic kidneys of 11 different PKD mouse models as well as in human polycystic kidneys. A shift in the pattern of CK1 alpha isoforms is observed in all PKD mouse models. Furthermore, the catalytic activities of both CK1 epsilon and CK1 alpha are increased in mouse polycystic kidneys. Inhibition of CK1 epsilon and CK1 alpha may thus contribute to the long-lasting attenuating effects of roscovitine and (S)-CR8 on cyst development. CDKs and CK1s may constitute a dual therapeutic target to develop kinase inhibitory PKD drug candidates
    corecore