128 research outputs found

    BAL phosphorus abundance and evidence for immense ionic column densities in quasar outflows: VLT X-Shooter observations of quasar SDSS J1512+1119

    Full text link
    We present spectroscopic analysis of the broad absorption line outflow in quasar SDSS J1512+1119. In particular, we focus our attention on a kinematic component in which we identify PV and SIV/SIV* absorption troughs. The shape of the unblended phosphorus doublet troughs and the three SIV/SIV* troughs allow us to obtain reliable column density measurements for these two ions. Photoionization modelling using these column densities and those of HeI* constrain the abundance of phosphorus to the range of 0.5-4 times the solar value. The total column density, ionization parameter and metalicity inferred from the PV and SIV column densities leads to large optical depth values for the common transition observed in BAL outflows. We show that the true CIV optical depth, is about 1000 times greater in the core of the absorption profile than the value deduced from its apparent optical depth.Comment: Accepted for publication in ApJ on August 26, 2012; 33 pages, 8 figure

    JASPAR 2018 : update of the open-access database of transcription factor binding profiles and its web framework

    Get PDF
    JASPAR (http://jaspar.genereg.net) is an open-access database of curated, non-redundant transcription factor (TF)-binding profiles stored as position frequency matrices (PFMs) and TF flexible models (TFFMs) for TFs across multiple species in six taxonomic groups. In the 2018 release of JASPAR, the CORE collection has been expanded with 322 new PFMs (60 for vertebrates and 262 for plants) and 33 PFMs were updated (24 for vertebrates, 8 for plants and 1 for insects). These new profiles represent a 30% expansion compared to the 2016 release. In addition, we have introduced 316 TFFMs (95 for vertebrates, 218 for plants and 3 for insects). This release incorporates clusters of similar PFMs in each taxon and each TF class per taxon. The JASPAR 2018 CORE vertebrate collection of PFMs was used to predict TF-binding sites in the human genome. The predictions are made available to the scientific community through a UCSC Genome Browser track data hub. Finally, this update comes with a new web framework with an interactive and responsive user-interface, along with new features. All the underlying data can be retrieved programmatically using a RESTful API and through the JASPAR 2018 R/Bioconductor package

    BioMart – biological queries made easy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biologists need to perform complex queries, often across a variety of databases. Typically, each data resource provides an advanced query interface, each of which must be learnt by the biologist before they can begin to query them. Frequently, more than one data source is required and for high-throughput analysis, cutting and pasting results between websites is certainly very time consuming. Therefore, many groups rely on local bioinformatics support to process queries by accessing the resource's programmatic interfaces if they exist. This is not an efficient solution in terms of cost and time. Instead, it would be better if the biologist only had to learn one generic interface. BioMart provides such a solution.</p> <p>Results</p> <p>BioMart enables scientists to perform advanced querying of biological data sources through a single web interface. The power of the system comes from integrated querying of data sources regardless of their geographical locations. Once these queries have been defined, they may be automated with its "scripting at the click of a button" functionality. BioMart's capabilities are extended by integration with several widely used software packages such as BioConductor, DAS, Galaxy, Cytoscape, Taverna. In this paper, we describe all aspects of BioMart from a user's perspective and demonstrate how it can be used to solve real biological use cases such as SNP selection for candidate gene screening or annotation of microarray results.</p> <p>Conclusion</p> <p>BioMart is an easy to use, generic and scalable system and therefore, has become an integral part of large data resources including Ensembl, UniProt, HapMap, Wormbase, Gramene, Dictybase, PRIDE, MSD and Reactome. BioMart is freely accessible to use at <url>http://www.biomart.org</url>.</p

    Five-Vertebrate ChIP-seq Reveals the Evolutionary Dynamics of Transcription Factor Binding.

    Get PDF
    Transcription factors (TFs) direct gene expression by binding to DNA regulatory regions. To explore the evolution of gene regulation, we used chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) to determine experimentally the genome-wide occupancy of two TFs, CCAAT/enhancer-binding protein alpha and hepatocyte nuclear factor 4 alpha, in the livers of five vertebrates. Although each TF displays highly conserved DNA binding preferences, most binding is species-specific, and aligned binding events present in all five species are rare. Regions near genes with expression levels that are dependent on a TF are often bound by the TF in multiple species yet show no enhanced DNA sequence constraint. Binding divergence between species can be largely explained by sequence changes to the bound motifs. Among the binding events lost in one lineage, only half are recovered by another binding event within 10 kilobases. Our results reveal large interspecies differences in transcriptional regulation and provide insight into regulatory evolution

    High-throughput and quantitative assessment of enhancer activity in mammals by CapStarr-seq

    Get PDF
    International audienceCell-type specific regulation of gene expression requires the activation of promoters by distal genomic elements defined as enhancers. The identification and the characterization of enhancers are challenging in mammals due to their genome complexity. Here we develop CapStarr-Seq, a novel high-throughput strategy to quantitatively assess enhancer activity in mammals. This approach couples capture of regions of interest to previously developed Starr-seq technique. Extensive assessment of CapStarr-seq demonstrates accurate quantification of enhancer activity. Furthermore, we find that enhancer strength is associated with binding complexity of tissue-specific transcription factors and super-enhancers, while additive enhancer activity isolates key genes involved in cell identity and function. The CapStarr-Seq thus provides a fast and cost-effective approach to assess the activity of potential enhancers for a given cell type and will be helpful in decrypting transcription regulation mechanisms

    BioMart Central Portal—unified access to biological data

    Get PDF
    BioMart Central Portal (www.biomart.org) offers a one-stop shop solution to access a wide array of biological databases. These include major biomolecular sequence, pathway and annotation databases such as Ensembl, Uniprot, Reactome, HGNC, Wormbase and PRIDE; for a complete list, visit, http://www.biomart.org/biomart/martview. Moreover, the web server features seamless data federation making cross querying of these data sources in a user friendly and unified way. The web server not only provides access through a web interface (MartView), it also supports programmatic access through a Perl API as well as RESTful and SOAP oriented web services. The website is free and open to all users and there is no login requirement

    Involvement of G-quadruplex regions in mammalian replication origin activity.

    Get PDF
    Genome-wide studies of DNA replication origins revealed that origins preferentially associate with an Origin G-rich Repeated Element (OGRE), potentially forming G-quadruplexes (G4). Here, we functionally address their requirements for DNA replication initiation in a series of independent approaches. Deletion of the OGRE/G4 sequence strongly decreased the corresponding origin activity. Conversely, the insertion of an OGRE/G4 element created a new replication origin. This element also promoted replication of episomal EBV vectors lacking the viral origin, but not if the OGRE/G4 sequence was deleted. A potent G4 ligand, PhenDC3, stabilized G4s but did not alter the global origin activity. However, a set of new, G4-associated origins was created, whereas suppressed origins were largely G4-free. In vitro Xenopus laevis replication systems showed that OGRE/G4 sequences are involved in the activation of DNA replication, but not in the pre-replication complex formation. Altogether, these results converge to the functional importance of OGRE/G4 elements in DNA replication initiation

    Strand selective generation of endo-siRNAs from the Na/phosphate transporter gene Slc34a1 in murine tissues

    Get PDF
    Natural antisense transcripts (NATs) are important regulators of gene expression. Recently, a link between antisense transcription and the formation of endo-siRNAs has emerged. We investigated the bi-directionally transcribed Na/phosphate cotransporter gene (Slc34a1) under the aspect of endo-siRNA processing. Mouse Slc34a1 produces an antisense transcript that represents an alternative splice product of the Pfn3 gene located downstream of Slc34a1. The antisense transcript is prominently found in testis and in kidney. Co-expression of in vitro synthesized sense/antisense transcripts in Xenopus oocytes indicated processing of the overlapping transcripts into endo-siRNAs in the nucleus. Truncation experiments revealed that an overlap of at least 29 base-pairs is required to induce processing. We detected endo-siRNAs in mouse tissues that co express Slc34a1 sense/antisense transcripts by northern blotting. The orientation of endo-siRNAs was tissue specific in mouse kidney and testis. In kidney where the Na/phosphate cotransporter fulfils its physiological function endo-siRNAs complementary to the NAT were detected, in testis both orientations were found. Considering the wide spread expression of NATs and the gene silencing potential of endo-siRNAs we hypothesized a genome-wide link between antisense transcription and monoallelic expression. Significant correlation between random imprinting and antisense transcription could indeed be established. Our findings suggest a novel, more general role for NATs in gene regulation
    corecore