10 research outputs found

    New approaches in the targeting of cell cycle, cell death and cancer progression

    Get PDF
    Im Rahmen dieser Arbeit wurden in verschiedenen Projekten neuartige AnsĂ€tze fĂŒr eine verbesserte Tumortherapie untersucht, mit dem Hauptaugenmerk die gesteigerte Proliferationsrate von Tumorzellen zu hemmen, Zelltod auszulösen bzw. Konzepte zum Verhindern von Metastasierung zu erstellen. DafĂŒr wurden zum einen verschiedene Naturstoffe und Pflanzenextrakte auf ihre anti-kanzerogene Wirkung untersucht. Des weiteren wurde ein Hauptaugenmerk auf den Zellzyklusregulator Cdc25A gelegt. Dieses Protein konnte in verschiedenen Zellinien mittels kurzer Hyperthermie und Heat Shock Protein 90 Hemmung degradiert werden. Untersuchungen ĂŒber biologische Grundlagen der Metastasierung, insbesondere des Eindringens von Krebszellen in das LymphgefĂ€ĂŸsystem, stellten einen dritten Schwerpunkt dieser Arbeit dar

    Colon cancer cell-derived 12(S)-HETE induces the retraction of cancer-associated fibroblast via MLC2, RHO/ROCK and Ca2+ signalling

    Get PDF
    Retraction of mesenchymal stromal cells supports the invasion of colorectal cancer cells (CRC) into the adjacent compartment. CRC-secreted 12(S)-HETE enhances the retraction of cancer-associated fibroblasts (CAFs) and therefore, 12(S)-HETE may enforce invasivity of CRC. Understanding the mechanisms of metastatic CRC is crucial for successful intervention. Therefore, we studied pro-invasive contributions of stromal cells in physiologically relevant three-dimensional in vitro assays consisting of CRC spheroids, CAFs, extracellular matrix and endothelial cells, as well as in reductionist models. In order to elucidate how CAFs support CRC invasion, tumour spheroid-induced CAF retraction and free intracellular Ca2+ levels were measured and pharmacological-or siRNA-based inhibition of selected signalling cascades was performed. CRC spheroids caused the retraction of CAFs, generating entry gates in the adjacent surrogate stroma. The responsible trigger factor 12(S)-HETE provoked a signal, which was transduced by PLC, IP3, free intracellular Ca2+, Ca(2+)calmodulin-kinase-II, RHO/ROCK and MYLK which led to the activation of myosin light chain 2, and subsequent CAF mobility. RHO activity was observed downstream as well as upstream of Ca2+ release. Thus, Ca2+ signalling served as central signal amplifier. Treatment with the FDA-approved drugs carbamazepine, cinnarizine, nifedipine and bepridil HCl, which reportedly interfere with cellular calcium availability, inhibited CAF-retraction. The elucidation of signalling pathways and identification of approved inhibitory drugs warrant development of intervention strategies targeting tumour-stroma interaction

    Fractionation of an Extract of Pluchea odorata Separates a Property Indicative for the Induction of Cell Plasticity from One That Inhibits a Neoplastic Phenotype

    Get PDF
    Introduction. Several studies demonstrated that anti-inflammatory remedies exhibit excellent anti-neoplastic properties. An extract of Pluchea odorata (Asteraceae), which is used for wound healing and against inflammatory conditions, was fractionated and properties correlating to anti-neoplastic and wound healing effects were separated. Methods. Up to six fractionation steps using silica gel, Sephadex columns, and distinct solvent systems were used, and eluted fractions were analysed by thin layer chromatography, apoptosis, and proliferation assays. The expression of oncogenes and proteins regulating cell migration was investigated by immunoblotting after treating HL60 cells with the most active fractions. Results. Sequential fractionations enriched anti-neoplastic activities which suppressed oncogene expression of JunB, c-Jun, c-Myc, and Stat3. Furthermore, a fraction (F4.6.3) inducing or keeping up expression of the mobility markers MYPT, ROCK1, and paxillin could be separated from another fraction (F4.3.7), which inhibited these markers. Conclusions. Wound healing builds up scar or specific tissue, and hence, compounds enhancing cell migration support this process. In contrast, successful anti-neoplastic therapy combats tumour progression, and thus, suppression of cell migration is mandatory

    The effect of organic anion-transporting polypeptides 1B1, 1B3 and 2B1 on the antitumor activity of flavopiridol in breast cancer cells

    Full text link
    The contribution of organic anion transporting polypeptides (OATPs) to the cellular uptake of flavopiridol was investigated in OATP1B1-, OATP1B3- and OATP2B1-expressing Chinese hamster ovary (CHO) cells. Uptake of flavopiridol into these cells showed typical Michaelis-Menten kinetics with much higher transport capacity for OATP1B3 compared to OATP1B1 and OATP2B1 (Vmax/Km, 33.9 vs. 8.84 and 2.41 ”l/mg/min, respectively). The predominant role of OATPs was further supported by a dramatic inhibition of flavopiridol uptake in the presence of the OATP substrate rifampicin. Uptake of flavopiridol by OATPs also seems to be an important determinant in breast cancer cells. The much higher mRNA level for OATP1B1 found in wild-type compared to ZR-75-1 OATP1B1 knockdown cells correlated with higher flavopiridol initial uptake leading to 4.6-fold decreased IC50 values in the cytotoxicity assay (IC50, 1.45 vs. 6.64 ”M). Cell cycle profile also showed a clear incidence for a stronger cell cycle arrest in the G2/M phase for ZR-75-1 wild-type cells compared to OATP1B1 knockdown cells, further indicating an active uptake via OATP1B1. In conclusion, our results revealed OATP1B1, OATP1B3 and OATP2B1 as uptake transporters for flavopiridol in cancer cells, which may also apply in patients during cancer therapy

    Pro- and anticarcinogenic mechanisms of piceatannol are activated dose dependently in MCF-7 breast cancer cells

    No full text
    Estrogenic procarcinogenic effects of piceatannol (PIC) contrast reports about anticarcinogenic activities of PIC. To explain this contradiction, we investigated PIC in estrogen-dependent MCF-7 breast cancer cells and elucidated those cellular mechanisms that correlated with the observed cell effects induced by PIC. Low PIC concentrations (50 nM) induced c-Myc that depended on progesterone receptor (PR) and estrogen receptor (ER). PR-mediated c-Myc induction by PIC was independent of nuclear PR activity but depended on mitogen-activated protein kinase (MAPK) signaling and was associated with an acceleration of cancer cell proliferation. In contrast, 25 mu M PIC inhibited deoxynucleotide triphosphate synthesis, activated Chk2 and p38-MAPK and this was accompanied by an attenuation of cancer cell growth. Apoptosis was most probably inhibited due to activation of Akt; however, high PIC concentrations (> 100 mu M) permitted apoptosis-like cell death in consequence to disruption of orchestrated mitotic signaling. The presented results show for the first time that nanomolar PIC concentrations signal through PR and Erk1/2 and provide a mechanistic explanation why moderate wine consumption-but not other alcoholic beverages-increases the breast cancer risk in women. In contrast, higher PIC concentrations in the micromolar range are considered for adjuvant anticancer therapeutic concepts
    corecore