623 research outputs found

    Co-receptor choice by VΞ±14i NKT cells is driven by Th-POK expression rather than avoidance of CD8-mediated negative selection

    Get PDF
    Mouse natural killer T (NKT) cells with an invariant VΞ±14-JΞ±18 rearrangement (VΞ±14 invariant [VΞ±14i] NKT cells) are either CD4+CD8βˆ’ or CD4βˆ’CD8βˆ’. Because transgenic mice with forced CD8 expression in all T cells exhibited a profound NKT cell deficit, the absence of CD8 has been attributed to negative selection. We now present evidence that CD8 does not serve as a coreceptor for CD1d recognition and that the defect in development in CD8 transgene homozygous mice is the result of a reduction in secondary T cell receptor Ξ± rearrangements. Thymocytes from mice hemizygous for the CD8 transgene have a less severe rearrangement defect and have functional CD8+ VΞ±14i NKT cells. Furthermore, we demonstrate that the transcription factor Th, Poxviruses and Zinc finger, and KrΓΌppel family (Th-POK) is expressed by VΞ±14i NKT cells throughout their differentiation and is necessary both to silence CD8 expression and for the functional maturity of VΞ±14i NKT cells. We therefore suggest that Th-POK expression is required for the normal development of VΞ±14i NKT cells and that the absence of CD8 expression by these cells is a by-product of such expression, as opposed to the result of negative selection of CD8-expressing VΞ±14i NKT cells

    Synthesis and biological activity of Ξ±-glucosyl C24:0 and C20:2 ceramides

    Get PDF
    a-Glucosyl ceramides 4 and 5 have been synthesised and evaluated for their ability to stimulate the activation and expansion of human iNKT cells. The key challenge in the synthesis of both target molecules was the stereoselective synthesis of the a-glycosidic linkage. Of the methods examined, glycosylation using per-TMS-protected glucosyl iodide 16 was completely a-selective and provided gram quantities of amine 11, from which a-glucosyl ceramides 4 and 5 were obtained by N-acylation. a-GlcCer 4, containing a C24 saturated acyl chain, stimulated a marked proliferation and expansion of human circulating iNKT cells in short-term cultures. a-GlcCer 5, which contains a C20 11,14-cis-diene acyl chain (C20:2),induced extremely similar levels of iNKT cell activation and expansion

    Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A

    Get PDF
    Immunoglobulin A (IgA) is prominently secreted at mucosal surfaces and coats a fraction of the intestinal microbiota. However, the commensal bacteria bound by IgA are poorly characterized and the type of humoral immunity they elicit remains elusive. We used bacterial flow cytometry coupled with 16S rRNA gene sequencing (IgA-Seq) in murine models of immunodeficiency to identify IgA-bound bacteria and elucidate mechanisms of commensal IgA targeting. We found that residence in the small intestine, rather than bacterial identity, dictated induction of specific IgA. Most commensals elicited strong T-independent (TI) responses that originated from the orphan B1b lineage and from B2 cells, but excluded natural antibacterial B1a specificities. Atypical commensals including segmented filamentous bacteria and Mucispirillum evaded TI responses but elicited T-dependent IgA. These data demonstrate exquisite targeting of distinct commensal bacteria by multiple layers of humoral immunity and reveal a specialized function of the B1b lineage in TI mucosal IgA responses

    Ξ±/β–T Cell Receptor (TCR)+CD4βˆ’CD8βˆ’ (NKT) Thymocytes Prevent Insulin-dependent Diabetes Mellitus in Nonobese Diabetic (NOD)/Lt Mice by the Influence of Interleukin (IL)-4 and/or IL-10

    Get PDF
    We have previously shown that nonobese diabetic (NOD) mice are selectively deficient in Ξ±/Ξ²-T cell receptor (TCR)+CD4βˆ’CD8βˆ’ NKT cells, a defect that may contribute to their susceptibility to the spontaneous development of insulin-dependent diabetes mellitus (IDDM). The role of NKT cells in protection from IDDM in NOD mice was studied by the infusion of thymocyte subsets into young female NOD mice. A single intravenous injection of 106 CD4βˆ’/lowCD8βˆ’ or CD4βˆ’CD8βˆ’ thymocytes from female (BALB/c Γ— NOD)F1 donors protected intact NOD mice from the spontaneous onset of clinical IDDM. Insulitis was still present in some recipient mice, although the cell infiltrates were principally periductal and periislet, rather than the intraislet pattern characteristic of insulitis in unmanipulated NOD mice. Protection was not associated with the induction of β€œallogenic tolerance” or systemic autoimmunity. Accelerated IDDM occurs after injection of splenocytes from NOD donors into irradiated adult NOD recipients. When Ξ±/Ξ²-TCR+ and Ξ±/Ξ²-TCRβˆ’ subsets of CD4βˆ’CD8βˆ’ thymocytes were transferred with diabetogenic splenocytes and compared for their ability to prevent the development of IDDM in irradiated adult recipients, only the Ξ±/Ξ²-TCR+ population was protective, confirming that NKT cells were responsible for this activity. The protective effect in the induced model of IDDM was neutralized by anti–IL-4 and anti–IL-10 monoclonal antibodies in vivo, indicating a role for at least one of these cytokines in NKT cell-mediated protection. These results have significant implications for the pathogenesis and potential prevention of IDDM in humans

    Differential tumor surveillance by natural killer (NK) and NKT cells

    Get PDF
    Natural tumor surveillance capabilities of the host were investigated in six different mouse tumor models where endogenous interleukin (IL)-12. does or does not dictate the efficiency of the innate immune response. Gene-targeted and lymphocyte subset-depleted mice were used to establish the relative importance of natural killer (NK) and NK1.1(+) T (NKT) cells in protection from tumor initiation and metastasis. In the models examined, CD3(-) NK cells were responsible for tumor rejection and protection from metastasis in models where control of major histocompatibility complex class I-deficient tumors was independent of IL-12, A protective role for NKT cells was only observed when tumor rejection required endogenous IL-12 activity. In particular, T cell receptor J alpha 281 gene-targeted mice confirmed a critical function for NKT cells in protection from spontaneous tumors initiated by the chemical carcinogen, methylcholanthrene. This is the first description of an antitumor function for NKT cells in the absence of exogenously administered potent stimulators such as IL-12 or alpha-galactosylceramide

    Identification of CD4βˆ’CD8βˆ’ Double-Negative Natural Killer T Cell Precursors in the Thymus

    Get PDF
    BACKGROUND: It is well known that CD1d-restricted Valpha14 invariant natural killer T (NKT) cells are derived from cells in the CD4(+)CD8(+) double-positive (DP) population in the thymus. However, the developmental progression of NKT cells in the earlier stages remains unclear, and the possible existence of NKT cell presursors in the earlier stages than DP stage remains to be tested. PRINCIPAL FINDINGS: Here, we demonstrate that NKT cell precursors that express invariant Valpha14-Jalpha18 transcripts but devoid of surface expression of the invariant Valpha14 receptor are present in the late CD4(-)CD8(-) double-negative (DN)4 stage and have the potential to generate mature NKT cells in both in vivo and in vitro experimental conditions. Moreover, the DN4 population in CD1d knock-out (CD1dKO) mice was similar to those with an NKT cell potential in wild-type (WT) C57BL/6 (B6) mice, but failed to develop into NKT cells in vitro. However, these precursors could develop into NKT cells when co-cultured with normal thymocytes or in an in vivo experimental setting, indicating that functional NKT cell precursors are present in CD1dKO mice. CONCLUSIONS: Together, these results demonstrate that thymic DN4 fraction contains NKT cell precursors. Our findings provide new insights into the early development of NKT cells prior to surface expression of the invariant Valpha14 antigen receptor and suggest the possible alternative developmental pathway of NKT cells
    • …
    corecore