2,647 research outputs found
Recommended from our members
Fighting merchants
Selected essays from a conference held in November 2013 to celebrate the contribution to scholarship of the medieval historian Professor James L. Bolton
Taking the fight to them: neighborhood human rights organizations and domestic protest
This article examines how human rights international non-governmental organizations (hereafter HROs) can increase the level of political protest in neighboring states. Previous research suggests local activities of HROs help to generate mobilization for protests against governments. This article shows that the presence of HROs in neighboring states can be a substitute for domestic HROs; if domestic HROs are already flourishing, there will be less of a âneighborâ effect. At sufficiently high levels of domestic HRO prevalence within a state, neighboring HROs help domestic HROs use institutionalized substitutes for protest mobilization strategies. Spatial econometric methods are used to test the implications of this theory. These results illuminate the role that non-governmental organizations play in these domestic political processes, and demonstrate the transnational nature of their activities
Diversity of Francisella Species in Environmental Samples from Marthaâs Vineyard, Massachusetts
We determined whether Francisella spp. are present in water, sediment, and soil from an active tularemia natural focus on Marthaâs Vineyard, Massachusetts, during a multiyear outbreak of pneumonic tularemia. Environmental samples were tested by polymerase chain reaction (PCR) targeting Francisella species 16S rRNA gene and succinate dehydrogenase A (sdhA) sequences; evidence of the agent of tularemia was sought by amplification of Francisella tularensis-specific sequences for the insertion element ISFTu2, 17-kDa protein gene tul4, and the 43-kDa outer membrane protein gene fopA. Evidence of F. tularensis subsp. tularensis, the causative agent of the human infections in this outbreak, was not detected from environmental samples despite its active transmission among ticks and animals in the sampling site. Francisella philomiragia was frequently detected from a brackish-water pond using Francisella species PCR targets, and subsequently F. philomiragia was isolated from an individual brackish-water sample. Distinct Francisella sp. sequences that are closely related to F. tularensis and Francisella novicida were detected from samples collected from the brackish-water pond. We conclude that diverse Francisella spp. are present in the environment where human cases of pneumonic tularemia occur
Genetic, environmental and stochastic factors in monozygotic twin discordance with a focus on epigenetic differences
PMCID: PMC3566971This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
Metapopulation structure for perpetuation of Francisella tularensis tularensis
<p>Abstract</p> <p>Background</p> <p>Outbreaks of Type A tularemia due to <it>Francisella tularensis tularensis </it>are typically sporadic and unstable, greatly hindering identification of the determinants of perpetuation and human risk. Martha's Vineyard, Massachusetts has experienced an outbreak of Type A tularemia which has persisted for 9 years. This unique situation has allowed us to conduct long-term eco-epidemiologic studies there. Our hypothesis is that the agent of Type A tularemia is perpetuated as a metapopulation, with many small isolated natural foci of transmission. During times of increased transmission, the foci would merge and a larger scale epizootic would occur, with greater likelihood that humans become exposed.</p> <p>Methods</p> <p>We sampled questing dog ticks from two natural foci on the island and tested them for tularemia DNA. We determined whether the force of transmission differed between the two foci. In addition, we examined the population structure of <it>F. tularensis </it>from ticks by variable number tandem repeat (VNTR) analysis, which allowed estimates of diversity, linkage disequilibrium, and eBURST analysis.</p> <p>Results</p> <p>The prevalence of tularemia DNA in ticks from our two field sites was markedly different: one site was stable over the course of the study yielding as many as 5.6% positive ticks. In contrast, infected ticks from the comparison site markedly increased in prevalence, from 0.4% in 2003 to 3.9% in 2006. Using 4 VNTR loci, we documented 75 different haplotypes (diversity = 0.91). eBURST analysis indicates that the stable site was essentially clonal, but the comparison site contained multiple unrelated lineages. The general bacterial population is evolving clonally (multilocus disequilibrium) and the bacteria in the two sites are reproductively isolated.</p> <p>Conclusion</p> <p>Even within an isolated island, tularemia natural foci that are no more than 15 km apart are uniquely segregated. One of our sites has stable transmission and the other is emergent. The population structure at the stable site is that of a clonal complex of circulating bacteria, whereas the emerging focus is likely to be derived from multiple founders. We conclude that the agent of tularemia may perpetuate in small stable natural foci and that new foci emerge as a result of spillover from such stable sites.</p
A Study of B0 -> J/psi K(*)0 pi+ pi- Decays with the Collider Detector at Fermilab
We report a study of the decays B0 -> J/psi K(*)0 pi+ pi-, which involve the
creation of a u u-bar or d d-bar quark pair in addition to a b-bar -> c-bar(c
s-bar) decay. The data sample consists of 110 1/pb of p p-bar collisions at
sqrt{s} = 1.8 TeV collected by the CDF detector at the Fermilab Tevatron
collider during 1992-1995. We measure the branching ratios to be BR(B0 -> J/psi
K*0 pi+ pi-) = (8.0 +- 2.2 +- 1.5) * 10^{-4} and BR(B0 -> J/psi K0 pi+ pi-) =
(1.1 +- 0.4 +- 0.2) * 10^{-3}. Contributions to these decays are seen from
psi(2S) K(*)0, J/psi K0 rho0, J/psi K*+ pi-, and J/psi K1(1270)
The state of the Martian climate
60°N was +2.0°C, relative to the 1981â2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
Nonrandom Distribution of Vector Ticks (Dermacentor variabilis) Infected by Francisella tularensis
The island of Martha's Vineyard, Massachusetts, is the site of a sustained outbreak of tularemia due to Francisella tularensis tularensis. Dog ticks, Dermacentor variabilis, appear to be critical in the perpetuation of the agent there. Tularemia has long been characterized as an agent of natural focality, stably persisting in characteristic sites of transmission, but this suggestion has never been rigorously tested. Accordingly, we sought to identify a natural focus of transmission of the agent of tularemia by mapping the distribution of PCR-positive ticks. From 2004 to 2007, questing D. variabilis were collected from 85 individual waypoints along a 1.5 km transect in a field site on Martha's Vineyard. The positions of PCR-positive ticks were then mapped using ArcGIS. Cluster analysis identified an area approximately 290 meters in diameter, 9 waypoints, that was significantly more likely to yield PCR-positive ticks (relative risk 3.3, Pâ=â0.001) than the rest of the field site. Genotyping of F. tularensis using variable number tandem repeat (VNTR) analysis on PCR-positive ticks yielded 13 different haplotypes, the vast majority of which was one dominant haplotype. Positive ticks collected in the cluster were 3.4 times (relative riskâ=â3.4, P<0.0001) more likely to have an uncommon haplotype than those collected elsewhere from the transect. We conclude that we have identified a microfocus where the agent of tularemia stably perpetuates and that this area is where genetic diversity is generated
Characterizing and correcting immune dysfunction in non-tuberculous mycobacterial disease
Non-tuberculous mycobacterial pulmonary disease (NTM-PD) is a chronic, progressive, and growing worldwide health burden associated with mounting morbidity, mortality, and economic costs. Improvements in NTM-PD management are urgently needed, which requires a better understanding of fundamental immunopathology. Here, we examine temporal dynamics of the immune compartment during NTM-PD caused by Mycobacterium avium complex (MAC) and Mycobactereoides abscessus complex (MABS). We show that active MAC infection is characterized by elevated T cell immunoglobulin and mucin-domain containing-3 expression across multiple T cell subsets. In contrast, active MABS infection was characterized by increased expression of cytotoxic T-lymphocyte-associated protein 4. Patients who failed therapy closely mirrored the healthy individual immune phenotype, with circulating immune network appearing to âignoreâ infection in the lung. Interestingly, immune biosignatures were identified that could inform disease stage and infecting species with high accuracy. Additionally, programmed cell death protein 1 blockade rescued antigen-specific IFN-Îł secretion in all disease stages except persistent infection, suggesting the potential to redeploy checkpoint blockade inhibitors for NTM-PD. Collectively, our results provide new insight into species-specific âimmune chatterâ occurring during NTM-PD and provide new targets, processes and pathways for diagnostics, prognostics, and treatments needed for this emerging and difficult to treat disease
- âŠ