5 research outputs found

    Extraction of three-dimensional information on image obtained by top view electron microscopy

    No full text
    L’industrie de la microélectronique est animée par une croissance exponentielle ininterrompue depuis le milieu du XXème siècle. Cette croissance, longtemps soutenue par la réduction de la taille de grille des transistors, est aujourd’hui portée par les innovations sur les formes complexes des transistors de nouvelle génération (Fin-FET, etc…). Afin de contrôler les étapes de conception de ces transistors, l’industrie du semi-conducteur a besoin d’outils de métrologie adaptés à ces nouvelles architectures pour lesquelles les caractéristiques géométriques influent directement sur les performances. Depuis plusieurs décennies, le CD-SEM (Critical Dimension Scanning Electron Microscope) est l’outil de référence pour mesurer la taille des motifs dans un environnement de production. Cependant, le CD-SEM ne permet pas, aujourd’hui, d’obtenir des mesures tridimensionnelles et les équipements de métrologie spécialisés dans les mesures 3D (AFM, FIB-STEM, Scattérométrie) ne sont pas compatibles avec les contraintes de production (temps de mesure, coût, destructivité, etc…).Depuis plusieurs années, des travaux de recherche, à l’instar de cette thèse, ont pour objectif de déterminer une méthode de métrologie tridimensionnelle basée sur l’utilisation du microscope électronique à balayage. L’approche retenue dans le cadre de ces travaux de thèse est la reconstruction géométrique basée sur l’inversion d’un modèle de simulation d’images de microscopie électronique à balayage. Cette approche nécessite l’utilisation d’un modèle de simulation rapide, performant et avec un minimum d’information a priori sur la géométrie. Au cours de cette thèse, nous avons développé deux modèles de simulation d’images SEM : Synthsem2 et Synthsem3. Le premier est un modèle paramétrique, rapide et performant, mais pas suffisamment indépendant de la géométrie pour l’application visée. En revanche, ce modèle s’avère utile pour d’autres applications et a fait l’objet d’un transfert industriel à une entreprise partenaire. Le deuxième modèle développé, Synthsem3, est un modèle totalement indépendant de la géométrie et calibré à partir de données obtenues par simulation Monte-Carlo. Ce modèle a également fait l’objet d’un transfert industriel à une entreprise partenaire.Le modèle Synthsem3 nous a permis d’étudier la sensibilité du signal de microscopie électronique aux variations de paramètres géométriques d’intérêt. Plusieurs conditions d’acquisition (énergie, inclinaison du faisceau) ont été étudiées afin de construire des tables de sensibilité pour chaque paramètre en fonction des caractéristiques géométriques du motif. Il en ressort notamment que l’estimation de la hauteur d’un motif à partir d’un signal SEM formé par un faisceau non incliné, est hautement incertaine, alors que l’utilisation d’un faisceau incliné améliore nettement l’incertitude. Nous avons ensuite procédé à la résolution du problème inverse par la méthode de Gauss-Newton, en utilisant un calcul analytique du gradient du modèle Synthsem3. Nous avons montré la possibilité de reconstruire une géométrie, sans information a priori sur celle-ci, à partir d’une image de microscopie électronique à balayage sans bruit, avec un faisceau non incliné. En présence de bruit dans le signal, la résolution est instable, conformément aux résultats de l’analyse de sensibilité paramétrique. Enfin, nous avons montré que l’inclinaison du faisceau améliore nettement la stabilité de la résolution du problème inverse.Ces travaux sont le point de départ de plusieurs projets à l’étude au sein du laboratoire d'accueil (CEA Leti) et de l’entreprise partenaire à laquelle nous avons transféré la technologie, en vue d’une future commercialisation.The microelectronics industry has been driven by an uninterrupted exponential growth since the mid-twentieth century. This growth, long supported by the reduction of the transistors gate size, is now driven by innovations on the complex shapes of new-generation transistors (Fin-FET, etc ...). In order to control the design stages of these transistors, the semiconductor industry needs metrology tools adapted to these new architectures for which the geometric characteristics directly influence the performances. For several decades, the Critical Dimension Scanning Electron Microscope (CD-SEM) has been the reference tool for measuring pattern size in a production environment. However, the CD-SEM does not allow, today, to obtain three-dimensional measurements and metrology equipment specialized in 3D measurements (AFM, FIB-STEM, Scalerometry) are not compatible with the production constraints (measurement time, cost, destructiveness, etc ...).For several years, research studies, like this thesis, have aimed to determine a three-dimensional metrology method based on the use of the scanning electron microscope. The approach adopted in this thesis is the geometric reconstruction based on the inversion of a simulation model of scanning electron microscopy images. This approach requires the use of a fast simulation model, efficient and with a minimum of prior information on the geometry. During this thesis, we developed two SEM image simulation models: Synthsem2 and Synthsem3. The first is a parametric model, fast and efficient, but not sufficiently independent of the geometry for the intended application. On the other hand, this model is useful for other applications and has been the subject of an industrial transfer to a partner company. The second model developed, Synthsem3, is a model totally independent of geometry and calibrated from data obtained by Monte-Carlo simulations. This model has also been the subject of an industrial transfer to a partner company.The Synthsem3 model allowed us to study the sensitivity of the electron microscopy signal to the variations of geometric parameters of interest. Several acquisition conditions (energy, inclination of the beam) have been studied in order to build sensitivity tables for each parameter according to the geometrical characteristics of the pattern. In particular, the estimation of the height of a pattern from a SEM signal formed by a non-tilted beam is highly uncertain, while the use of a tilted beam greatly improves the uncertainty. We then proceeded to solve the inverse problem by the Gauss-Newton method, using an analytical calculation of the gradient of the Synthsem3 model. We have shown the possibility of reconstructing a geometry, without prior information on it, from a noiseless scanning electron microscopy image, with a non tilted beam. Using a noisy signal, the resolution is unstable, in accordance with the results of the parametric sensitivity analysis. Finally, we have shown that the inclination of the beam clearly improves the stability of the resolution of the inverse problem.This work is the starting point for several projects under study in the host laboratory (CEA Leti) and the partner company to which we transferred the technology for future commercialization

    Limits of model-based CD-SEM metrology

    No full text
    International audienceAlthough the critical dimension (CD) is getting smaller following the ITRS roadmap, the scanning electron microscope (CD-SEM) is still the most general purpose tool used for non-destructive metrology in the semiconductor industry. However, we are now dealing with patterns whose dimensions are of the same order of magnitude as the electron interaction volume and therefore, the usual edge-based metrology methods fail. Like scatterometry has extended the resolution of optical imaging metrology through complex modeling of light-matter interaction, some electrons-matter simulation models have been proposed. They could be used to improve accuracy and precision of CD-SEM metrology. However, these model-based approaches also face to fundamental limits mainly due to probe size with respect to the considered structure and noise. This paper analyses these limits assuming the model is perfect and the microscope has no systematic defect. In this simulation study, we have used the model proposed by D. Nyyssonen, assuming to perfectly represent the SEM effects in the image. The feature of interest is limited to isolated trapezoidal lines with various CD, sidewall angles (SWA) and heights. We have carried out the study with several beam energies, tilts and probe sizes. Surprisingly enough, sensitivity analysis shows that with typical noise amplitude, sidewall angle can be determined with a reasonable precision using SEM images. Single tilted beam SEM images can also bring advantage to measure patterns height. Since these precision figures depend on the geometries, we provide useful graphs giving the ultimate precision for various dimensions (CD, height, SWA)

    Determining the validity domain of roughness measurements as a function of CD-SEM acquisition conditions

    No full text
    International audienceIn the effort of continuously improving patterning strategies for increasing circuit density while reducing dimensions, several challenges regarding patterning fidelity emerge. In recent years, stochastic effects had their relative importance increased, and therefore the need for closely monitoring those effects is also increasing [1]. Among other stochastic effects, within-feature roughness is significant as it can impact circuit electrical behavior, decreasing time and power performance, and even lead to failures. The workhorse method of the industry for measuring roughness is based on topdown CD-SEM (Critical Dimension Scanning Electron Microscopy) image. In recent years, methods have been proposed as a way to improve and standardize the roughness measurement [2, 3]. Those methods rely on the obtention of the power spectral density (PSD) from the detected edges of the features in CD-SEM images, in order to determine their roughness. However, one important aspect is the impact of the CD-SEM image acquisition conditions on the limitation of the observed PSD. As the acquisition parameters changes, different frequencies may be more or less observable in a CD-SEM image, potentially leading to errors in the metrology evaluation [4]

    Non-singular Brans–Dicke collapse in deformed phase space

    No full text
    corecore